Answer:
398 mL
Explanation:
Using the equation for molarity,
C₁V₁ = C₂V₂ where C₁ = concentration before adding water = 8.61 mol/L and V₁ = volume before adding water, C₂ = concentration after adding water = 1.75 mol/L and V₂ = volume after adding water = 500 mL = 0.5 L
V₂ = V₁ + V' where V' = volume of water added.
So, From C₁V₁ = C₂V₂
V₁ = C₂V₂/C₁
= 1.75 mol/L × 0.5 L ÷ 8.61 mol/L
= 0.875 mol/8.61 mol/L
= 0.102 L
So, V₂ = V₁ + V'
0.5 L = 0.102 L + V'
V' = 0.5 L - 0.102 L
= 0.398 L
= 398 mL
So, we need to add 398 mL of water to the nitric solution.
First, calculate for the amount of heat used up for increasing the temperature of ice.
H = mcpdT
H = (18 g)*(2.09 J/g-K)(50 K) = 1881 J
Then, solve for the heat needed to convert the phase of water.
H = (1 mol)(6.01 kJ/mol) = 6.01 kJ = 6010 J
Then, solve for the heat needed to increase again the temperature of water.
H = (18 g)(4.18 J/gK)(70 k)
H = 5266.8 J
The total value is equal to 13157.8 J
Answer: 13157.8 J
Answer: Hello i am confused are you asking a question?
Explanation:
<span>The answer to the question "what is the highest point of the transverse wave called" is a crest or peak. A transverse wave is a wave in which the medium of the wave vibrates at 90 degrees to the direction in which the wave is moving at. The lowest points are called the troughs. Examples of transverse waves are light and electromagnetic radiation.</span>
Answer:
1.Ecologists often estimate the size and density of. populations using quadrats and the mark-recapture method.
2. The two key components of ecosystem stability are resilience and resistance.
3.The availability of abiotic factors (such as water, oxygen, and space) and biotic factors (such as food) affect population
4. When the climate is changing in the colder direction it effects the planet in the opposite way than it does when it is changing in the warmer direction. Ad nauseam the contemporary, it’ll keep getting hotter and at a greater rate so the ecosystem is going to die.