Two or three i believe to be the answer
It's an interesting fact that scientists don't fully understand how it works. But it seems to be to do with molten metal circulating in the core. Given that it's just liquid metal sloshing around, it seems understandable that it won't always circulate perfectly - imagine the cloud bands in Jupiter's atmosphere - they are reasonably stable but change from time to time. When the liquid changes its speed or direction, however slowly it does so, the resulting magnetic field will move or switch direction.
<span>
As scientists try to build better mathematical models of how the core works, they should be able to learn more about the magnetic field it produces. Hope this helps</span>
Answer:
7.5 m
Explanation:
k = Spring constant = 180 N/m
x = Displacement of spring = 14 cm
m = Mass of projectile = 0.024 kg
a = g = Acceleration due to gravity = 
s = Displacement of projectile
v = Final velocity = 0
u = Initial velocity
The potential energy of the spring will be equal to the kinetic energy of the object


The maximum height reached above the initial position is 7.5 m
Answer:
a) 
b) 
Explanation:
From the exercise we got our <u>initial data</u>

a) To find <u><em>maximum height</em></u> we know that at that point 


Solving for y

b) Since we know that the ball strikes the fairway 190 m away

Solving for t

Now, we can calculate the speed of the ball in both axes



The <em>negative</em> sign means the direction of the ball at that point.
Answer: 0°
Explanation:
Step 1: Squaring the given equation and simplifying it
Let θ be the angle between a and b.
Given: a+b=c
Squaring on both sides:
... (a+b) . (a+b) = c.c
> |a|² + |b|² + 2(a.b) = |c|²
> |a|² + |b|² + 2|a| |b| cos 0 = |c|²
a.b = |a| |b| cos 0]
We are also given;
|a+|b| = |c|
Squaring above equation
> |a|² + |b|² + 2|a| |b| = |c|²
Step 2: Comparing the equations:
Comparing eq( insert: small n)(1) and (2)
We get, cos 0 = 1
> 0 = 0°
Final answer: 0°
[Reminders: every letters in here has an arrow above on it]