Answer:
Explanation:
Height covered = 12m
time to fall by 12 m
s = 1/2 gt²
12 = 1/2 g t²
t = 1.565 s
Horizontal distance of throw
= 8.5 x 1.565
= 13.3 m
This distance is to be covered by dog during the time ball falls ie 1.565 s
Speed of dog required = 13.3 / 1.565
= 8.5 m /s
b ) dog will catch the ball at a distance of 13.3 m .
Answer:
8 seconds
Explanation:
Answer:
Explanation:
Going up
Time taken to reach maximum height= usin∅/g
=3 secs
Maximum height= H+[(usin∅)²/2g]
=80+[(60sin30)²/20]
=125 meters
Coming Down
Maximum height= ½gt²
125= ½(10)(t²)
t=5 secs
Answer:
I would increase the horizontal velocity or the vertical velocity or both to make the ball go the extra distance to cross the goal line.
Explanation:
In order to increase the horizontal distance covered by the ball, we need to examine the variables involved in the formula of range of projectile. The formula for the range of projectile is given as follows:
R = V₀² Sin 2θ/g
where, g is a constant on earth (acceleration due to gravity) and θ is the angle of ball with ground at the time of launching. The value of θ should be 45° for maximum range. In this case we do not know the angle so, we can not tell if we should change it or not.
The only parameter here which we can increase to increase the range is launch velocity (V₀). The formula for V₀ in terms of horizontal and vertical components is as follows:
V₀ = √(V₀ₓ² + V₀y²)
where,
V₀ₓ = Horizontal Velocity
V₀y = Vertical Velocity
Hence, it is clear from the formula that we can increase both the horizontal and vertical velocity to increase the initial speed which in turn increases the horizontal distance covered by the ball.
<u>Therefore, I would increase the horizontal velocity or the vertical velocity or both to make the ball go the extra distance to cross the goal line.</u>
<span>An emf is induced when a magnet is in the middle of coil because when a magnetic field is changing then it produces a voltage in the coil, which causes a current to flow. If the coil is changed through a magnetic flux, then a voltage is produced.</span>
<span>Answer:
Well, let's start by finding the pressure due to the "extra" height of the mercury.
p = 1.36e4 kg/m³ · (0.105m - 0.05m) · 9.8m/s² = 7330 N/m² = 7330 Pa
The pressure at B is clearly p_b = p_atmos = p_gas + 7330 Pa
The pressure at A is p_a = p_gas = p_atmos - 7330 Pa
c) 1 atm = 101 325 Pa
Then p_gas = 101325 Pa - 7330 Pa = 93 995 Pa</span>