The question is incomplete, the complete question is:
Standard reduction potentials for zinc(II) and copper(II)
The standard reduction potential for a substance indicates how readily that substance gains electrons relative to other substances at standard conditions. The more positive the reduction potential, the more easily the substance gains electrons. Consider the following:
Zn2+(aq)+2e−→Zn(s),Cu2+(aq)+2e−→Cu(s), E∘red=−0.763 V E∘red=+0.337 V
Part B
What is the standard potential, E∘cell, for this galvanic cell? Use the given standard reduction potentials in your calculation as appropriate.
Express your answer to three decimal places and include the appropriate units.
Answer:
1.100 V
Explanation:
E∘cell= E∘cathode - E∘anode
E∘cathode= +0.337 V
E∘anode= −0.763 V
E∘cell= 0.337-(-0.763)
E∘cell= 1.1V
This may help you
Allright for <span><span>H2</span>O:</span>
- The central atom is? --> the oxygen atom
- How many atoms are bonded to the central atom? --> 2 hydrogen atoms
- How many lone pairs of electrons are on the central atom? --> O has 6 electrons and has 2 single bonds, so 2 pairs
- How many single bonds are there in this molecule? --> 2
- How many multiple bonds (double and/or triple) are there in this molecule? --> none
For each of your molecules, answer the following questions:
1. Determine the electronegativity between the atoms of each molecule.
Electronegativity O = 3.44
Electronegativity H = 2.20
3.44-2.20=1.24, so the electronegativity between O and H = 1.24
2. Identify the bond as either ionic or covalent.
Electronegativity of 0.0-1.7 = covalent
Electronegativity of 1.7-3.3 = ionic
So it's a covalent bond
3. State whether the molecule is polar or non polar.
Electronegativity of 0.5-1.7= polar covalent
4. Identify the structure as having hydrogen bonding, dipole-dipole moments or London dispersion forces (LDF).
<span><span>H2</span>O</span><span> = hydrogen bonding</span>
Answer:
6.8746142857L
Explanation:
Using ideal gas equation PV=nRT
3.50V=5.63*.0821L * atm/mol*K * (20.0C+273.15C)
Answer: Molarity of
anions in the chemist's solution is 0.0104 M
Explanation:
Molarity : It is defined as the number of moles of solute present per liter of the solution.
Formula used :

where,
n= moles of solute
= volume of solution in ml = 100 ml
Now put all the given values in the formula of molarity, we get

Therefore, the molarity of solution will be 

As 1 mole of
gives 2 moles of 
Thus
moles of
gives =
Thus the molarity of
anions in the chemist's solution is 0.0104 M
We have gravity here on earth while in space there’s none