An ideal gas is defined as one in which all collisions between atoms or molecules are perfectly eleastic and in which there are no intermolecular attractive forces. One can visualize it as a collection of perfectly hard spheres which collide but which otherwise do not interact with each other.
Happy to help
Add 7 water atom to the right hand side to adjust the quantity of oxygen. Increase Cr(+3) by two to adjust the quantity of Cr. Duplicate Cl-by two to adjust the quantity of chlorine molecules.
Cr2O7[2-](aq) +2 Cl[-](aq) < - >2 Cr[3+] (aq) + Cl2(g)+7H2O
Presently adjust that charges.
you have - 4 charges on the left hand side, while +18 charges on the right hand side, there for include 14H+ the left hand side to adjust the charges
Cr2O7[2-](aq) +2 Cl[-](aq)+14H+ < - >2 Cr[3+] (aq) + Cl2(g)+7H2O
take note of that the oxidation number of hydrogen in water is +1
Answer: Among the listed substances
is the molecular compound.
Explanation:
A chemical compound formed by the chemical combination of two or more non-metals is called a molecular compound or covalent compound.
For example, Xe and Cl are non-metals. The compound formed by them is
which is a molecular compound.
A molecular compound is formed by sharing of atoms between the combining atoms.
Whereas NaF,
and CaO are all ionic compounds as they are formed by chemical combination of a metal and a non-metal.
Thus, we can conclude that among the listed substances
is the molecular compound.
Answer:
Molality = 7.5 mol/kg
Explanation:
Given data:
Mass of NH₄Cl = 6.30 g
Mass of water = 15.7 g (15.7/1000 =0.016 kg)
Molality = ?
Solution:
Formula of molality:
Molality = Moles of solute / mass of solvent in gram
Now we will first calculate the number of moles of solute( NH₄Cl )
Number of moles = mass/ molar mass
Molar mass of NH₄Cl = 53.491 g/mol
Number of moles = 6.30 g/ 53.491 g/mol
Number of moles = 0.12 mol
Now we will calculate the molality.
Molality = Moles of solute / mass of solvent in gram
Molality = 0.12 mol / 0.016 kg
Molality = 7.5 m
or (m=mol/kg)
Molality = 7.5 mol/kg