Answer:
The correct answer is 1 glycogen degradation would slow down.
Explanation:
Glycogen is the principle storage polysaccharide present in the liver and muscle of human body.
Glycogen contain both alpha-1,4-glycosidic linkage and alpha -1,6-glycosidic linkage.During glycogenolysis some glucose residues are transferred from branch point of the glycogen to its end and thereafter a single glucose residue is linked to the branch point of glycogen by alpha-1,6-glycosidic linkage.
The alpha-1,6-glycosidic linked glucose of glycogen is finally get separated from glycogen by the catalytic activity of alpha-1,6-glycosidase enzyme in the final step of glycogenolysis.
According to the given question if there is no alpha-1,6-glycosidic linkage in the glycogen then glycogen degradation will slow down.
Answer:
Cabon-12 has same average atomic weight and mass number.
Explanation:
carbon-12 has average atomic weight 12 amu and mass number of 12.
amu represents average of mass of a nucleon.
As carbon-12 has same average atomic mass and mass number therefore carbon-12 is a good standard to determine average mass of a nucleon.
Again, abundance of carbon-12 isotope is almost equal to 99%. Therefore fluctuation of average atomic weight from 12 amu is very very low.
So, carbon-12 is taken as a standard to determine mass of a nucleon.
Hence atomic mass of carbon-12 is 12 amu.
The term "solution" is more frequently used when a homogeneous mixture<span> is a liquid, although it is sometimes used if the </span>homogeneous mixture<span> is a gas.</span>
Ca(OH)₂ ==> Ca²⁺ + 2 OH<span>-
Ca(OH)</span>₂ is <span>strong Bases</span><span>
</span>Therefore, the [OH-] equals 5 x 10⁻⁴ M. For every Ca(OH)₂ you produce 2 OH⁻<span>.
</span>
pOH = - log[ OH⁻]
pOH = - log [ <span>5 x 10⁻⁴ ]
pOH = 3.30
pH + pOH = 14
pH + 3.30 = 14
pH = 14 - 3.30
pH = 10.7
hope this helps!</span>
I think the answer is yes