0.114 mol/l
The equilibrium equation will be:
Kc = ([Br2][Cl2])/[BrCl]^2
The square factor for BrCl is due to the 2 coefficient on that side of the equation.
Now solve for BrCl, substitute the known values and calculate.
Kc = ([Br2][Cl2])/[BrCl]^2
[BrCl]^2 * Kc = ([Br2][Cl2])
[BrCl]^2 = ([Br2][Cl2])/Kc
[BrCl] = sqrt(([Br2][Cl2])/Kc)
[BrCl] = sqrt(0.043 mol/l * 0.043 mol/l / 0.142)
[BrCl] = sqrt(0.001849 mol^2/l^2 / 0.142)
[BrCl] = sqrt(0.013021127 mol^2/l^2)
[BrCl] = 0.114110152 mol/l
Rounding to 3 significant figures gives 0.114 mol/l
The structure of compound A would be solid that is dense enough for antimicrobial form
Answer: Option (d) is the correct answer.
Explanation:
An equation in which electrolytes are represented in the form of ions is known as an ionic equation.
Strong electrolytes easily dissociate into their corresponding ions. Hence, they form ionic equation.
is a strong acid and
is a strong bases, therefore, both of them will dissociate into ions.
Thus, total ionic equation will be as follows.

Potassium oxide: K₂O.
There's no need for prefixes since K₂O is an ionic compound.
<h3>Explanation</h3>
Find the two elements on a periodic table:
- Potassium- K- on the left end of period four.
- Oxygen- O- near the right end of periodic two.
Elements on the bottom-left corner of the periodic table are metals. Those on the top-right corner are nonmetals.
- Potassium is a metal,
- Oxygen is a nonmetal.
A metal and a nonmetal combine to form an ionic compound. Potassium oxide is likely to be an ionic compound. It contains two types of ions:
- Potassium ions: Potassium is group 1 of the periodic table. It is an alkaline metal. Like other alkaline metals such as sodium Na, potassium K tends to lose one electron and form ions of charge +1 in compounds. The ion would be K⁺.
- Oxide ions from oxygen: Oxygen is the second most electronegative element on the periodic table. It tends to gain two electrons and form the oxide ion
when it combines with metals.
The two types of ions carry opposite charges. They shall pair up at a certain ratio such that they balance the charge on each other. The charge on each
ion is twice that on a
ion. Each
would pair up with two
. Hence the subscript in the formula:
.
There are two classes of compounds:
- Covalent compounds, which need prefixes, and
- Ionic compounds, which need no prefix.
Prefixes are needed only in covalent compounds. For instance in the covalent compound carbon dioxide
, the prefix di- indicates that there are two oxygen atoms in the formula
. However, there's no need for prefix in ionic compounds such as
.
phosphorus in water is rapid combustion.