Answer:
Explanation:
Dalton's atomic theory proposed that all matter was composed of atoms, indivisible and indestructible building blocks. While all atoms of an element were identical, different elements had atoms of differing size and mass.
In 1897, J.J. Thomson discovered the electron by experimenting with a Crookes, or cathode ray, tube. He demonstrated that cathode rays were negatively charged. In addition, he also studied positively charged particles in neon gas.
Rutherford overturned Thomson's model in 1911 with his well-known gold foil experiment in which he demonstrated that the atom has a tiny and heavy nucleus. Rutherford designed an experiment to use the alpha particles emitted by a radioactive element as probes to the unseen world of atomic structure.
The Bohr model shows the atom as a small, positively charged nucleus surrounded by orbiting electrons. Bohr was the first to discover that electrons travel in separate orbits around the nucleus and that the number of electrons in the outer orbit determines the properties of an element.
Answer:
<em>The correct option is A) Arrhenius</em>
Explanation:
According to the Arrhenius concept of acids and bases, an acid must produce H+ ions when it is present in a solution and the base must produce OH- ions when placed in a solution.
Ammonia does not contain OH- ions of its own when dissolved in water.
The reaction of ammonia dissolving is water can be written as:
NH3 + H2O ⇌ NH4+ + OH−
As we can see from the equation, ammonia does form OH- ions but it does not have OH- ions on its own.
Hence, according to the Arrhenius concept, NH3 is not a base.
KE = 0
<h3>Further explanation </h3>
Energy is the ability to do work
Energy because its motion is expressed as Kinetic energy (KE) which can be formulated as:

So for two objects that have the same speed, the greater the mass of the object, the greater the kinetic energy
The stone in hand is in a motionless state (at rest) so that its velocity (v) = 0, so it has no kinetic energy
But this stone can have <em>potential energy that is gained due to its height</em>