Answer:
The answers to your question are below
Explanation:
a) 6.85×1020 H2O2 molecules
H2O2 MW = 32 + 2 = 34 g
34g -------------------- 6.023 x 10²³ molecules
x ------------------- 6.85 x 10 ²⁰
x = (6.85 x 10 ²⁰)(34)/ 6.023 x 10²³
x = 0.038 g
3.3×1022 SO2 molecules
MW SO2 = 32 + 32 = 64g
64 g -------------------- 6.023 x 10²³ molecules
x -------------------- 3.3×1022 SO2 molecules
x = (3.3×1022 SO2)(64) / 6.023 x 10²³
x = 3.51 g
5.5×1025 O3 molecules
MW = 16 x 3 = 48g
48 g ----------------- 6.023 x 10²³ molecules
x ------------------ 5.5×1025 O3 molecules
x = (5.5×1025 )(48) / 6.023 x 10²³
x = 4383 g
9.30×1019 CH4 molecules
MW = 12 + 4 = 16 g
16 g -------------------- 6.023 x 10²³ molecules
x -------------------- 9.30×1019 CH4 molecules
x = (9.30×1019)(16) / 6.023 x 10²³
x = 0.0025 g
Answer:
Explanation:
Hello! Hope this helps!
One important measure of the rate at which a radioactive substance decays is called half-life, or t1/2. Half-life is the amount of time needed for one half of a given quantity of a substance to decay. Half-lives as short as 10–6 second and as long as 109 years are common.
Answer:
the answer is d .
Explanation:
all of these have pollutants and chemicals in them , damaging the ozone with carbon dioxide .
The true statement about the balanced equations for nuclear and chemical changes is; both are balanced according to the total mass before and after the change.
A basic law in science is called the law of conservation of mass. Its general statement is that mass can neither be created nor destroyed.
Both in chemical and nuclear changes, mass is involved and in both cases, the law of conservation of mass strictly applies.
This means that for both chemical and nuclear changes; total mass before reaction must be equal to total mass after reaction.
Hence, both reactions are balanced according to the total mass before and after the change.
Learn more: brainly.com/question/22064431