Water (H
2O) is a polar inorganic compound that is at room temperature a tasteless and odorless liquid, which is nearly colorless apart from an inherent hint of blue. It is by far the most studied chemical compound and is described as the "universal solvent" [18][19] and the "solvent of life".[20] It is the most abundant substance on Earth[21] and the only common substance to exist as a solid, liquid, and gas on Earth's surface.[22] It is also the third most abundant molecule in the universe.[21]
Water (H
2O)


NamesIUPAC name
water, oxidane
Other names
Hydrogen hydroxide (HH or HOH), hydrogen oxide, dihydrogen monoxide (DHMO) (systematic name[1]), hydrogen monoxide, dihydrogen oxide, hydric acid, hydrohydroxic acid, hydroxic acid, hydrol,[2] μ-oxido dihydrogen
Identifiers
CAS Number
7732-18-5 
3D model (JSmol)
Interactive image
Beilstein Reference
3587155ChEBI
CHEBI:15377 
ChEMBL
ChEMBL1098659 
ChemSpider
937 
Gmelin Reference
117
PubChem CID
962
RTECS numberZC0110000UNII
059QF0KO0R 
InChI
InChI=1S/H2O/h1H2 
Key: XLYOFNOQVPJJNP-UHFFFAOYSA-N 
SMILES
O
Properties
Chemical formula
H
2OMolar mass18.01528(33) g/molAppearanceWhite crystalline solid, almost colorless liquid with a hint of blue, colorless gas[3]OdorNoneDensityLiquid:[4]
0.9998396 g/mL at 0 °C
0.9970474 g/mL at 25 °C
0.961893 g/mL at 95 °C
Solid:[5]
0.9167 g/ml at 0 °CMelting point0.00 °C (32.00 °F; 273.15 K) [a]Boiling point99.98 °C (211.96 °F; 373.13 K) [6][a]SolubilityPoorly soluble in haloalkanes, aliphaticand aromatic hydrocarbons, ethers.[7]Improved solubility in carboxylates, alcohols, ketones, amines. Miscible with methanol, ethanol, propanol, isopropanol, acetone, glycerol, 1,4-dioxane, tetrahydrofuran, sulfolane, acetaldehyde, dimethylformamide, dimethoxyethane, dimethyl sulfoxide, acetonitrile. Partially miscible with Diethyl ether, Methyl Ethyl Ketone, Dichloromethane, Ethyl Acetate, Bromine.Vapor pressure3.1690 kilopascals or 0.031276 atm[8]Acidity (pKa)13.995[9][10][b]Basicity (pKb)13.995Conjugate acidHydroniumConjugate baseHydroxideThermal conductivity0.6065 W/(m·K)[13]
Refractive index (nD)
1.3330 (20 °C)[14]Viscosity0.890 cP[15]Structure
Crystal structure
Hexagonal
Point group
C2v
Molecular shape
Bent
Dipole moment
1.8546 D[16]Thermochemistry
Heat capacity (C)
75.375 ± 0.05 J/(mol·K)[17]
Std molar
entropy (So298)
69.95 ± 0.03 J/(mol·K)[17]
Std enthalpy of
formation (ΔfHo298)
−285.83 ± 0.04 kJ/mol[7][17]
Gibbs free energy (ΔfG˚)
−237.24 kJ/mol[7]
Answer : The percentage composition of carbon, hydrogen and sulfur in a compound is, 38.8 %, 9.6 % and 51.6 % respectively.
Explanation :
To calculate the percentage composition of element in sample, we use the equation:

Given:
Mass of carbon = 1.94 g
Mass of hydrogen = 0.48 g
Mass of sulfur = 2.58 g
First we have to calculate the mass of sample.
Mass of sample = Mass of carbon + Mass of hydrogen + Mass of sulfur
Mass of sample = 1.94 + 0.48 + 2.58 = 5.0 g
Now we have to calculate the percentage composition of a compound.



Hence, the percentage composition of carbon, hydrogen and sulfur in a compound is, 38.8 %, 9.6 % and 51.6 % respectively.
Answer:
0.21 M. (2 sig. fig.)
Explanation:
The molarity of a solution is the number of moles of the solute in each liter of the solution. The unit for molarity is M. One M equals to one mole per liter.
How many moles of NaOH in the original solution?
,
where
is the number of moles of the solute in the solution.
is the concentration of the solution.
for the initial solution.
is the volume of the solution. For the initial solution,
for the initial solution.
.
What's the concentration of the diluted solution?
.
is the number of solute in the solution. Diluting the solution does not influence the value of
.
for the diluted solution.- Volume of the diluted solution:
.
Concentration of the diluted solution:
.
The least significant number in the question comes with 2 sig. fig. Keep more sig. fig. than that in calculations but round the final result to 2 sig. fig. Hence the result: 0.021 M.