The product formed when Ag2O decompose is O2 ( answer c)
explanation
Decomposition involve separation of a single chemical compound into two ore more elemental parts Ag2O decomposes to yield Ag and O2
that is 2Ag2O→ 4Ag + O2
2 moles of Ag2O decomposes to yield 4 moles of Ag and 1 mole of O2
Answer:
401135 kJ
Explanation:
From the balanced quation,
(q/n) = CΔE
Molar heat of combustion = 7.85kJk × (303.81-298.70)k
= 7.85kj × 5.11
= 40.1135kj
Answer:
This question is incomplete
Explanation:
This question is incomplete, however, element R and element Q having the same number of valence electrons means they belong to the same group in the periodic table which is the reason for there similar chemical behavior (as elements in the same group tend to have the same chemical properties).
Element R having fewer energy level (or electron shell) than element Q shows element R has fewer number of electrons than element Q and can be found earlier in the periodic table (or group in particular) when compared to element Q
Answer:
Mass = 357.7 g
Explanation:
Given data:
Mass of Fe = 250 g
Mass of oxygen = 120 g
Mass of iron(III) oxide produced = ?
Solution:
Chemical equation:
4Fe + 3O₂ → 2Fe₂O₃
Number of moles of Fe:
Number of moles = mass/molar mass
Number of moles = 250 g/ 55.8 g/mol
Number of moles = 4.48 mol
Number of moles of O₂ :
Number of moles = mass/molar mass
Number of moles = 120 g/ 32 g/mol
Number of moles = 3.75 mol
Now we will compare the moles of reactants with product.
Fe : Fe₂O₃
4 : 2
4.48 : 2/4×4.48 = 2.24
O₂ : Fe₂O₃
3 : 2
3.75 : 2/3×3.75= 2.5
Less number of moles of Fe₂O₃ are produced by Fe thus it will act as limiting reactant.
Mass of Fe₂O₃:
Mass = number of moles × molar mass
Mass = 2.24 mol × 159.69 g/mol
Mass = 357.7 g
Answer:
Hot material near the core is less dense and rises, when it cools, it becomes more dense and sinks.
Explanation:
This best explains how heat plays a role in the movement of materials within Earth's interior because it's how convection works. Convection is the circular motion that happens when warmer air or liquid which has faster moving molecules, making it less dense rises, while the cooler air or liquid drops down. Convection currents within the earth move layers of magma, and convection in the ocean creates currents.