Answer:
- <em>Abbie’s acceleration is (1/2) Zak’s acceleration.</em>
Explanation
1. <u>Data</u>:
a) ω = constant
b) Abbie: r₁ = 1 m
c) Zak: r₂ = 2 m
d) Ac₁ = ? Ac₂
2. <u>Formulae</u>
3. <u>Solution</u>:
a) Abbie:
b) Zack:
c) Divide Ac₁ / Ac₂
- Ac₁ / Ac₂ = ω² (1m) / [ω² (2m) ] = 1/2
⇒ Ac₁ = (1/2) Ac₂ = Ac₂ / 2 = 0.5 Ac₂
The answer is "friction and air resistance" gravity does some of the work by keeping the object from floating away, but friction and air resistance does the biggest part. Friction is how rough the ground it meaning on tile, dirt, grass, etc... that would slow down the object and air resistance is the gravity pushing on the object also making it stop.
Hope this helps!
They begin to adapt into their new location. They then end up having adaptations to help them survive.
An electrons transferred and compound forms
Answer:
(a) The energy of the photon is 1.632 x
J.
(b) The wavelength of the photon is 1.2 x
m.
(c) The frequency of the photon is 2.47 x
Hz.
Explanation:
Let;
= -13.60 ev
= -3.40 ev
(a) Energy of the emitted photon can be determined as;
-
= -3.40 - (-13.60)
= -3.40 + 13.60
= 10.20 eV
= 10.20(1.6 x
)
-
= 1.632 x
Joules
The energy of the emitted photon is 10.20 eV (or 1.632 x
Joules).
(b) The wavelength, λ, can be determined as;
E = (hc)/ λ
where: E is the energy of the photon, h is the Planck's constant (6.6 x
Js), c is the speed of light (3 x
m/s) and λ is the wavelength.
10.20(1.6 x
) = (6.6 x
* 3 x
)/ λ
λ = 
= 1.213 x 
Wavelength of the photon is 1.2 x
m.
(c) The frequency can be determined by;
E = hf
where f is the frequency of the photon.
1.632 x
= 6.6 x
x f
f = 
= 2.47 x
Hz
Frequency of the emitted photon is 2.47 x
Hz.