Answer:
his acceleration rate is -0.00186 m/s²
Explanation:
Given;
initial position of the car, x₀ = 100 miles = 160, 900 m ( 1 mile = 1609 m)
time of motion, t₀ = 60 minutes = 60 mins x 60 s = 3,600 s
final position of the car, x₁ = 150 miles = 241,350 m
time of motion, t₁ = 100 minutes = 100 mins x 60 s = 6,000 s
The initial velocity is calculated as;
u = 160, 900 m / 3,600 s
u = 44.694 m/s
The final velocity is calculated as;
v = 241,350 m / 6,000 s
v = 40.225 m/s
The acceleration is calculated as;

Therefore, his acceleration rate is -0.00186 m/s²
Answer:
efficiancy=40 percent
Explanation:
efficiency=energy output/energy input×100
efficiancy=8J/20J×100
efficiancy=0.4×100
efficiancy=40 percent
Mark brianliest if my answer suit your question..
Answer:
A thin, taut string tied at both ends and oscillating in its third harmonic has its shape described by the equation y(x,t)=(5.60cm)sin[(0.0340rad/cm)x]sin[(50.0rad/s)t]y(x,t)=(5.60cm)sin[(0.0340rad/cm)x]sin[(50.0rad/s)t], where the origin is at the left end of the string, the x-axis is along the string, and the y-axis is perpendicular to the string. (a) Draw a sketch that shows the standing-wave pattern. (b) Find the amplitude of the two traveling waves that make up this standing wave. (c) What is the length of the string? (d) Find the wavelength, frequency, period, and speed of the traveling waves. (e) Find the maximum transverse speed of a point on the string. (f) What would be the equation y(x, t) for this string if it were vibrating in its eighth harmonic?
C
The smaller waves created by the constant winds gradually add up to form larger ones.