Answer:
A=
Explanation:
We have given power =40 W but only 10% of this power is used so actual power 
We know that from Stefan's law
where
is Boltzmann constant which value is 
So
A=
Electrostatic potential energy of a system of charge is given by

here we have
= two charges of different magnitudes
r = distance between charges
so here we can see that electrostatic potential energy will depends upon the product of two charges and inversely depends upon the distance between the two charges
So here we can say that the electrostatic potential energy of two charges will be same and equal to each other
Answer:
<h2><u>plz mark as a pure substance abuse and function of the equation for sulphur dioxide emissions and function of the equation for sulphur dioxide emissions and function of the equation for sulphur dioxide emissions and function of the equation for sulphur dioxide emissions and function of the equation for </u></h2>
Answer:
Explanation:
We shall solve this question with the help of Ampere's circuital law.
Ampere's ,law
∫ B dl = μ₀ I , B is magnetic field at distance x from the axis within wire
we shall find magnetic field at distance x . current enclosed in the area of circle of radius x
= I x π x² / π R²
= I x² / R²
B x 2π x = μ₀ x current enclosed
B x 2π x = μ₀ x I x² / R²
B = μ₀ I x / 2π R²
Maximum magnetic B₀ field will be when x = R
B₀ = μ₀I / 2π R
Given
B = B₀ / 3
μ₀ I x / 2π R² = μ₀I / 2π R x 3
x = R / 3
b ) The largest value of magnetic field is on the surface of wire
B₀ = μ₀I / 2π R
At distance x outside , let magnetic field be B
Applying Ampere's circuital law
∫ B dl = μ₀ I
B x 2π x = μ₀ I
B = μ₀ I / 2π x
Given B = B₀ / 3
μ₀ I / 2π x = μ₀I / 2π R x 3
x = 3R .
Answer:
Second one
Explanation:
Lying on the floor is something you can do with the least amount of energy