Answer:
Yes
Explanation:
Yes it is called the refractive index denoted by n
n=sin<i/sin<r
Jsisisusuagahannananana this is worth 22 points g that’s crazy 25
To solve the problem we will simply perform equivalence between both expressions. We will proceed to place your units and develop your internal operations in case there is any. From there we will compare and look at its consistency


At the same time we have that



Therefore there is not have same units and both are not consistent and the correct answer is B.
Answer:
There is absolutely No relationship between the weight of an object (which is constant) and the frictional force. If a block is sliding on a surface, that surface will be exerting a force on the block. That force can be resolved into a component parallel to the surface (which we call the frictional component), and a component perpendicular to the surface (called the normal component). For many situations, we find experimentally that the frictional component is approximately proportional to the normal component. The frictional component divided by the normal component is defined to be a quantity called the coefficient of kinetic or sliding friction. The coefficient of kinetic friction obviously depends on the nature of the surfaces involved. The normal component on an object can be decreased if you pull in the direction of the normal component (the weight does not change). However pulling this way on the object not only decreases the normal component, but it also decreases the frictional component since they are proportional. This is why it is easier to slide something if you pull up on it while you push it. If you push down, the normal and frictional components increase so it is harder to slide the object. The weight of an object is the downward force exerted by Earth’s gravity on that object, and it does not change no matter how you push or pull on the object.