Answer:
Atoms
Explanation:
Energy, potential energy, is stored in the covalent bonds holding atoms together in the form of molecules. This is often called chemical energy.
Answer:
C6H12O6 + 6O2 → 6CO2 + 6H2O.
Explanation:
<span>Ionic bonding between sodium and phosphate ions.</span>
CrO and Cr₂O₃ make up the simplest chromium oxide formula.
What name does Cr₂O₃ use?
- Chromium oxide (Cr₂O₃)sometimes referred to as chromium sesquioxide or chromic oxide, is a compound in which chromium is oxidized to a +3 state. Sodium dichromate is calcined with either carbon or sulfur to produce it.
- Eskolaite, a mineral that bears the name of the Finnish geologist Pentti Eskola, is a kind of chromium oxide green that may be found in nature. The metallic glassy green surface of this unusual material has an unsettling moss-like look that may be used to conceal oneself in the environment.
- Studies on humans have conclusively shown that chromium (VI) breathed is a potential carcinogen, increasing the likelihood of developing lung cancer. According to animal studies, chromium (VI) exposure by inhalation can result in lung cancers.
Learn more about chromium here:
brainly.com/question/15588080
#SPJ4
Answer:
D. (16.0 g + 16.0 g) × 100% / (32.1 g + 16.0 g + 16.0 g) = 49.9%
Explanation:
Step 1: Detemine the mass of O in SO₂
There are 2 atoms of O in 1 molecule of SO₂. Then,
m(O) = 2 × 16.0 g = 16.0 g + 16.0 g = 32.0 g
Step 2: Determine the mass of SO₂
m(SO₂) = 1 × mS + 2 × mO = 1 × 32.1 g + 2 × 16.0 g = 32.1 g + 16.0 g + 16.0 g = 64.1 g
Step 3: Detemine the mass percent of oxygen in SO₂
We will use the following expression.
m(O)/m(SO₂) × 100%
(16.0 g + 16.0 g) × 100% / (32.1 g + 16.0 g + 16.0 g) = 49.9%