The role of the carbon dioxide in water is that it has the ability to form an acid in which it has the capacity to react with underground limestones deposits. If it is able to react with the limestone, then it will most likely produce a substance that can be water-soluble.
Answer:
There is 5.56 g of gold for every 1 g of chlorine
Explanation:
The ratio is the relationship between two numbers, defined as the ratio of one number to the other. So, the ratio between two numbers a and b is the fraction 
You know that a compound has 15.39 g of gold for every 2.77 g of chlorine. This can be expressed by the ratio:

The proportion is the equal relationship that exists between two reasons and is represented by: 
This reads a is a b as c is a d.
To calculate the amount of gold per 1 g of chlorine, the following proportion is expressed:

Solving for the mass of gold gives:

mass of gold= 5.56 grams
So, <u><em>there is 5.56 g of gold for every 1 g of chlorine</em></u>
NaCl is salt to it is obviously SOLUBLE :)
Answer:
Explanation:
State symbols are used in chemical equations to delineate the state of matter in which the reaction is taking place.
They give a good perspective of the state of the reactants and products obtainable.
There are basically four states of matter in every chemical reaction:
- Solids are symbolized by small letter (s)
- Liquids are represented by (l)
- Gases are shown by (g)
- Aqueous solutions having water as the medium by (aq)
These symbols appear as subscript in front of the chemical species.
Corresponding in size or amount to something else.