Answer:
28,400 N
Explanation:
Let's start by calculating the pressure that acts on the upper surface of the hatch. It is given by the sum of the atmospheric pressure and the pressure due to the columb of water, which is given by Stevin's law:

On the lower part of the hatch, there is a pressure equal to

So, the net pressure acting on the hatch is

which acts from above.
The area of the hatch is given by:

So, the force needed to open the hatch from the inside is equal to the pressure multiplied by the area of the hatch:

Answer:
ωi = 15.4 rev/sec
Explanation:
Since the movement of the fan is rotating, we are thus dealing with Rotational motion. In rotational motion, for angular speed to take place also means angular acceleration is also occurring.
angular acceleration = α = (change in speed)/(change in time)
angular acceleration = α = Δw/Δt = (ω - ωi) /(t- t₀) ..........(equation 1)
α = (ω -ωi) /(t- 0)
α = (ω-ωi) /t
ωi = ω - αt ......................................(equation 2)
where ωi is the initial angular speed.
We replace the values for ω, t and α
ωi = 105 rad/sec - ( 4.4 rad/sec² )(1.85s) = 96.86 rad/s = 15.415747788 rev/sec
Answer:
The time rate of change of flux is

Explanation:
Given :
Current
A
Area of plate

Plate separation
m
(A)
First find the capacitance of capacitor,

Where 

F
But 
Where 


Now differentiate above equation wrt. time,



Therefore, the time rate of change of flux is

Answer:
Height of cliff = S = 20 m (Approx)
Explanation:
Given:
Initial velocity = 8 m/s
Distance s = 16 m
Starting acceleration (a) = 0
Computation:
s = ut + 1/2a(t)²
16 = 8t
t = 2 sec
Height of cliff = S
Gravitational acceleration = 10 m/s
S = 1/2a(t)²
S = 1/2(10)(2)²
Height of cliff = S = 20 m (Approx)
Answer:
4500 N
Explanation:
When a body is moving in a circular motion it will feel an acceleration directed towards the center of the circle, this acceleration is:
a = v^2/r
where v is the velocity of the body and r is the radius of the circumference:
Therefore, a body with mass m, will feel a force f:
f = m v^2/r
Therefore we need another force to keep the body(car) from sliding, this will be given by friction, remember that friction force is given a the normal times a constant of friction mu, that is:
fs = μN = μmg
The car will not slide if f = fs, i.e.
fs = μmg = m v^2/r
That is, the magnitude of the friction force must be (at least) equal to the force due to the centripetal acceleration
fs = (1000 kg) * (30m/s)^2 / (200 m) = 4500 N