Answer:
The magnitude of the acceleration of a proton at a distance of 1.5cm from the bead is 5.6 x10^13m/s².
The magnitude of the acceleration of a proton at a distance of 1.5cm from the bead is 9.8 x10^16m/s².
Explanation:
Newton's second law states that the total sum of the force acting on a particle in motion is equal to the mass of the particle times the acceleration due to the force. So the electric force between the bead and proton is equal to ma. That is,
Fe = kq1*q2/r² = m*a
The proton had a charge of +1.6x10^-19C and a mass of 1.67×10^-27kg
By substituting these values into the equivalent for a we have that the acceleration of the proton at a distance of 1.5cm form the bead is 5.6×10^13m/s²
The proton had a charge of -1.6x10^-19C and a mass of 9.10×10^-31kg
By substituting these values into the equivalent for a we have that the acceleration of the proton at a distance of 1.5cm form the bead is 9.8×10^16m/s²
Displacement = velocity * time
Just substitute the value, & solve the equation.
Hope this helps!
Answer:
Option C=> π+.
Explanation:
Just as it is given in the question above, we can see that the addition or combination of proton and neutron gives what is known as QUARKS.
Quarks are not easily measured because one can not see and study a quark independently; quarks move in multiples together.
The study of Quarks is very important in physics because they relate very well with electromagnetic force, strong force, weak force and Gravitational force.
"...When the remaining quarks combine to form a single particle, it is a π+".
π+ is a meson or a pion and it contains quarks and anti-quarks too
Explanation:
The velocity of sound depends on the density of the medium. So we need to find the density of air at each set of conditions. The density of air is:
ρ = (Pd / (Rd T)) + (Pv / (Rv T))
where Pd and Pv are the partial pressures of dry air and water vapor,
Rd and Rv are the specific gas constants of dry air and water vapor,
and T is the absolute temperature.
At the first condition:
Pv = 31.7 mmHg = 4226.3 Pa
Pd = 650 mmHg - 31.7 mmHg = 618.3 mmHg = 82433 Pa
Rv = 461.52 J/kg/K
Rd = 287.00 J/kg/K
T = 30°C = 303.15°C
ρ = (82433 / 287.00 / 303.15) + (4226.3 / 461.52 / 303.15)
ρ = 0.94746 + 0.03021
ρ = 0.97767 kg/m³
At the second condition:
Pv = 0 Pa
Pd = 650 mmHg = 86660 Pa
Rv = 461.52 J/kg/K
Rd = 287.00 J/kg/K
T = 0°C = 273.15°C
ρ = (86660 / 287.00 / 273.15) + (0 / 461.52 / 273.15)
ρ = 1.1054 + 0
ρ = 1.1054 kg/m³
The square of the velocity of sound is proportional to the ratio between pressure and density:
v² = k P / ρ
Since the atmospheric pressure is constant, we can say it's proportional to just the density:
v² = k / ρ
Using the first condition to find the coefficient:
(340)² = k / 0.97767
k = 113018.652
Now finding the velocity of sound at the second condition:
v² = 113018.652 / 1.1054
v = 319.75
Answer:
2954.6 N/C, 46.36 degree from positive axis
Explanation:
E1 = 1300 N/C, θ1 = 35 degree
E2 = 1700 N/C, θ2 = 55 degree
Now write the electric fields in vector form
E1 = 1300 ( Cos 35 i + Sin 35 j) = 1064.9 i + 745.6 j
E2 = 1700 ( Cos 55 i + Sin 55 j) = 975.08 i + 1392.6 j
Resultant electric field
E = E1 + E2
E = 1064.9 i + 745.6 j + 975.08 i + 1392.6 j
E = 2039.08 i + 2138.2 j
Magnitude of E
E = sqrt (2039.08^2 + 2138.2^2)
E = 2954.6 N/C
Let it makes an angle Φ from X axis
tan Φ = 2138.2 / 2039.08 = 1.049
Φ = 46.36 degree from positive X axis.