Answer:
ExplanaPulpotomy is a vital pulp therapy in which the coronal portion of the pulp is removed surgically and the remaining radicular pulp is preserved intact. Over the remaining radicular pulp tissue, a suitable material is placed which has the potential to protect the pulp from further insult and initiate healing and repairtion:
It allowed him to realize that the mass of an atom is concentrated at its center because the atoms mostly went through the foil but some were deflected. He also realized that an atom probably wasn't just empty space and scattered electron and it had a positive center.
Answer:
The given molecules are SO2 and BrF5.
Explanation:
Consider the molecule SO2:
The central atom is S.
The number of domains on S in this molecule is three.
Domain geometry is trigonal planar.
But there is a lone pair on the central atom.
So, according to VSEPR theory,
the molecular geometry becomes bent or V-shape.
Hybridization on the central atom is
.
Consider the molecule BrF5:
The central atom is Br.
The number of domains on the central atom is six.
Domain geometry is octahedral.
But the central atom has a lone pair of electrons.
So, the molecular geometry becomes square pyramidal.
The hybridization of the central atom is
.
The shapes of SO2 and BrF5 are shown below:
The mass of nitric acid required to make the given solution is 0.0627 g.
The given parameters:
- <em>Volume of the acid, V = 250 mL</em>
- <em>pH of the acid, = 2.4</em>
The hydrogen ion (H⁺) concentration of the nitric acid is calculated as follows;

The molarity of the nitric acid is calculated as follows;

The number of moles of the nitric acid is calculated as follows;

The molar mass of nitric acid is calculated as;

The mass of the nitric acid contained in the calculated number of moles is calculated as;

Thus, the mass of nitric acid required to make the given solution is 0.0627 g.
Learn more about molarity of acids here: brainly.com/question/13864682
C. KOH + HBr → KBr + H₂O
Explanation:
The two equations above illustrates the conservation of matter. The law of conservation of matters states that
"in a chemical reaction, matter is neither created nor destroyed but transformed from one form to another".
By this law, we understand that the amount of a particular matter we are starting with should be the one we end with.
KOH + HBr → KBr + H₂O
Conserving Product Reactants
K 1 1
O 1 1
H 2 2
We can see that the amount on both sides are the same.
Learn more:
Conservation of matter brainly.com/question/2190120
#learnwithBrainly