Answer:
315mL
Explanation:
Data obtained from the question include the following:
Molarity of stock solution (M1) = 0.135 M
Volume of stock solution needed (V1) =?
Molarity of diluted solution (M2) = 0.0851 M
Volume of diluted solution (V2) = 500mL
The volume of the stock solution needed can be obtain as follow:
M1V1 = M2V2
0.135 x V1 = 0.0851 x 500
Divide both side by 0.135
V1 = (0.0851 x 500) / 0.135
V1 = 315mL
Therefore, the volume of the stock solution needed is 315mL
Answer:
5.8 L
Step-by-step explanation:
This looks like a case where we can use the <em>Combined Gas Law</em> to calculate the temperature.
p₁V₁/T₁ = p₂V₂/T₂ Multiply both sides by T₂
p₁V₁T₂/T₁ = p₂V₂ Divide each side by V₂
V₂ = V₁ × p₁/p₂ × T₂/T₁
=====
<em>Data</em>:
p₁ = 5.6 atm
V₁ = 20 L
T₁ = 35 °C = 308.15 K
p₂ = 23 atm
V₂ = ?
T₂ = 95 °C = 368.15 K
=====
<em>Calculation:
</em>
V₂ = 20 × 5.6/23 × 368.15/308.15
V₂ = 20 × 0.243 × 1.19
V₂ = 5.8 L
Answer:
2.7 x 10^-1
Explanation:
The places you move to the left are added to the 10 in negative exponential
ENERGY TRANSFORMATION is when energy is changed from one type to another