During the full moon and new moon.
Hardy-Weinberg equilibrium requires no immigration or emigration, a large population, random mating, and no spontaneous mutations (all of which are virtually unavoidable in nature). Natural selection would violate these conditions.
Explanation:
Assuming dragon genetics follow the same rules as fruit flies, we would get the same possible genotype for all 16 offspring provided that the genes are not linked.
Considering dragon genetics, flame eyes (F) are dominant to blue eyes (f) and burbling (B) is dominant to whistling (b).
Now, a dihybrid cross between two homozygous blue-eyed, whistling dragons will yield 16 offspring all with the same possible genotype .i.e. homozygous blue-eyed, whistling type.
Morgan through experiments on fruit flies observed that when the two genes in a dihybrid cross were situated on the same chromosome, the proportion of parental gene combination were much higher than the non-parental type.
He attributed this due to the physical association or linkage of the two genes and coined the term 'linkage' to describe the physical association of genes on a chromosome. The term 'recombination' is to describe the generation of non-parental gene combination.
To learn more about dihybrid cross here
brainly.com/question/1185199
#SPJ4
If there are two different alleles for a trait, this means t<span>he trait could show up in two different forms.</span>
my answer would be the 3rd one
my bad if i'm wrong