The affinity of hemoglobin for oxygen is less than its structural analog myoglobin. However, this does not affect hemoglobin's usefulness for the body; on the contrary, it allows hemoglobin to be a more efficient carrier than myoglobin. This is because hemoglobin can release oxygen more easily than can myoglobin. It is both important for oxygen to be carried to different areas and also to be released when needed. The higher affinity of a given protein for oxygen, the harder it will be for that protein to release oxygen when needed. Therefore, hemoglobin's lower affinity for oxygen serves it well because it allows hemoglobin to release oxygen more easily in the body.
Answer:
False humans can be classically conditioned.
Although humans learning something wouldn't general be considered classical conditioning but rather Cognition. That doesn’t mean they can’t “learn” via classical conditioning.
Cytoplasm. This photo should help explain it!
Answer:
The intracellular is where enzymes need to perform optimally or near optimum.
Explanation:
The Km is the concentration of molecules where an enzyme performs at half of its maximum velocity (Vmax). Therefore, when molecules are near Km the enzyme is able to hydrolyze molecules nearer its Vmax.