There are 100 degrees between the freezing (0°) and boiling points (100°) of water on the Celsius scale and 180 degrees between the similar points (32° and 212°) on the Fahrenheit scale.
Problem: Two scientists are doing an experiment designed to identify the boiling point
Answer: 250°F is the higher temperature by 2°F
Answer:
See explanation
Explanation:
The question is incomplete because the image of the alcohol is missing. However, I will try give you a general picture of the reaction known as hydroboration of alkenes.
This reaction occurs in two steps. In the first step, -BH2 and H add to the same face of the double bond (syn addition).
In the second step, alkaline hydrogen peroxide is added and the alcohol is formed.
Note that the BH2 and H adds to the two atoms of the double bond. The final product of the reaction appears as if water was added to the original alkene following an anti-Markovnikov mechanism.
Steric hindrance is known to play a major role in this reaction as good yield of the anti-Markovnikov like product is obtained with alkenes having one of the carbon atoms of the double bond significantly hindered.
Answer:
bohr descirbed the atomic structure and found that electrons travel in separate orbits around the nucleus. jj thomson created the plum pudding model.
Answer:
Option C = same period.
Explanation:
All these elements belongs to second period of periodic table. This period consist of eight elements lithium, beryllium, boron, carbon, nitrogen, oxygen, fluorine and neon.
Electronic configuration of lithium:
Li₃ = [He] 2s¹
Electronic configuration of beryllium:
Be₄ = [He] 2s²
Electronic configuration of boron:
B₅ = [He] 2s² 2p¹
Electronic configuration of carbon:
C₆ = [He] 2s² 2p²
Electronic configuration of nitrogen:
N₇ = [He] 2s² 2p³
Electronic configuration of oxygen:
O₈ = [He] 2s² 2p⁴
Electronic configuration of fluorine:
F₉ = [He] 2s² 2p⁵
Electronic configuration of neon:
Ne₁₀ = [He] 2s² 2p⁶
All these elements present in same period having same electronic shell.
However their families, valance electrons and group are different. Boron have three valance electrons and belongs to group 3A. Carbon belongs to group 4A and have 4 valance electrons. Nitrogen belongs to group 5A and have five valance electrons. Oxygen belongs to group 6A and have six valance electrons. Fluorine belongs to group 7A and have seven valance electrons.