First, find how many grams are in 1 mole of water.
For a hydrogen atom, there is about 1 gram per mole. For an oxygen atom, there are about 16 grams per mole.
In H2O, there are two hydrogen atoms and one oxygen atom. This means there are 18 grams in one mole of water. Multiply the mass in one mole by your number of moles.
18 x 11.8 = 212.4 grams
You have 212.4 grams of water.
Answer:
T₁ = 39 K
Explanation:
Given data:
Initial pressure = 1023.6 kpa
Final pressure = 8114 kpa
Final temperature = 36°C (36+ 273= 309K)
Initial temperature = ?
Solution:
P₁/T₁ = P₂/T₂
T₁ = P₁×T₂ /P₂
T₁ = 1023.6 kpa × 309 K /8114 kpa
T₁ = 316292.4 K. Kpa /8114 kpa
T₁ = 39 K
Thus original pressure was 39 k.
Answer:
s an example, the ground state configuration of the sodium atom is 1s22s22p63s1, as deduced from the Aufbau principle (see below). The first excited state is obtained by promoting a 3s electron to the 3p orbital, to obtain the 1s22s22p63p1 configuration, abbreviated as the 3p level.
Explanation:
Answer:
I think the density is 64g/cm^3
i did 960 divided by 15 to get 64.
Answer:
did not match any documents.
Suggestions:
Make sure all words are spelled correctly.
Try different keywords.
Try more general keywords.
Try fewer keywords.
Explanation: