Resistance of a material being scratched in known as: Hardness
You can solve this by using the equation (P1V1/T1) = (P2V2/T2). Plug in 0.50 atm for P1, leave V1 as the unknown, and plug in 325 K as T1. Then substitute 1.2 atm for P2, 48 L for V2, and 320 K for T2. Solve for V1, which is 117L, but since you round using two sig figs, your answer is C, 120 L. Hope this helps!
Answer:
C3H6 + Br2 → C3H6Br2
Explanation:
The reaction in which C3H6Br2 (1,2-Dibromopropane) is created is:
We can see that the only difference between the product (C3H6Br2) and the known reactant (C3H6) of the reaction is two bromine atoms (Br2). Br2 is diatomic bromine - a molecule we get after combining two bromine atoms. This compound is a red-brown liquid at room temperature, which means that that is the liquid described in your question.
To determine whether the amount of H2 in the lab is dangerous, we first need to know how much hydrogen gas is present in the room in units of percent by volume. For this particular problem, we cannot exactly determine since we do not know the total volume of the room. Hope this answers the question.
<span>I believe thats false. think about the mummys youve seen? do you see fine detail and intact organs</span>