A mixture can be separated. Everything in a mixture keeps it's own properties and are not chemically joined together. I am not completely sure about the compound. Although with the cake example, the ingredients have been mixed and kind of "fused" together upon baking. Hope this helps a little. (P.S. trail mix is a good example of a mixture.)
Answer:
V=0.68L
Explanation:
For this question we can use
V1/T1 = V2/T2
where
V1 (initial volume )= 0.75 L
T1 (initial temperature in Kelvin)= 303.15
V2( final volume)= ?
T2 (final temperature in Kelvin)= 273.15
Now we must rearrange the equation to make V2 the subject
V2= (V1/T1) ×T2
V2=(0.75/303.15) ×273.15
V2=0.67577931717
V2= 0.68L
When formaldehyde and acetone then react with each other( aldol condensation) then it will be formed <u> methyl vinyl ketone.</u>
<u />
In organic chemistry, an aldol condensation would be a condensation reaction in which an enol and enolate ion combines with a carbonyl chemical to produce a -hydroxy aldehyde or -hydroxy ketone, that is then dehydrated to produce a conjugated enone.
In aldol condensation, when formaldehyde and acetone then react with each other then it will be formed <u> </u><u>methyl vinyl ketone.</u>
It can be written as
→ 
When it will be heated then it gives methyl vinyl ketones.
→ 
So, the pair of reactants will be formaldehyde and acetone
To know more about aldol condensation
brainly.com/question/9415260
#SPJ4
Answer: 318 K
Explanation:
Combined gas law is the combination of Boyle's law, Charles's law and Gay-Lussac's law.
The combined gas equation is,

where,
= initial pressure of gas = 231 kPa
= final pressure of gas = 168 kPa
= initial volume of gas = 3.25 L
= final volume of gas = 4.35 L
= initial temperature of gas = 
= final temperature of gas = ?
Now put all the given values in the above equation, we get:


At 318 K of temperature will the same gas take up 4.35 liters of space and have a pressure of 168 kPa