Answer:
a human that walks on earth
Explanation:
Answer:
that best describes the process is C
Explanation:
This problem is a calorimeter process where the heat given off by one body is equal to the heat absorbed by the other.
Heat absorbed by the smallest container
Q_c = m ce (
-T₀)
Heat released by the largest container is
Q_a = M ce (T_{i}-T_{f})
how
Q_c = Q_a
m (T_{f}-T₀) = M (T_{i} - T_{f})
Therefore, we see that the smaller container has less thermal energy and when placed in contact with the larger one, it absorbs part of the heat from it until the thermal energy of the two containers is the same.
Of the final statements, the one that best describes the process is C
since it talks about the thermal energy and the heat that is transferred in the process
Answer: It is B 38% have a good day :DDD
Answer:
The mass of the object on the Moon (and anywhere else) is about 30.61kg. Please see more detail below.
Explanation:
Weight is the gravitational force exerted on the object and is a function of mass and gravitational acceleration:
(weight) = (mass) x (gravitational acceleration)
We are to find the mass, knowing the weight on Earth to be 300N:
(mass) = (weight on Earth) / (gravitational acceleration on Earth) = 300N / 9.8 m/s^2 = 30.61 kg
The mass of the object is 30.61kg.
The mass of the object is independent of gravity. Therefore the answer to the question "What is its mass on the Moon" is 30.61kg.
If the question were what is its weight on the Moon, the answer would be
(weight on Moon) = (mass) x (grav.accel. on Moon) = 30.61kg x 1.62 m/s^2 = 49.59N
which is about 1/6 of the object's weight on the Earth.
Answer:
The state of being without reliablr access to a sufficient quantity of affordable, nutritious food