Answer:
(c) 16 m/s²
Explanation:
The position is
.
The velocity is the first time-derivative of <em>r(t).</em>
<em />
<em />
The acceleration is the first time-derivative of the velocity.

Since <em>a(t)</em> does not have the variable <em>t</em>, it is constant. Hence, at any time,

Its magnitude is 16 m/s².
Ok so this is simple projectile motion problem.
if we have an object falling in free fall it is subject to gravity of -9.80m/s^2
so it says it takes 6 sec to fall and we know initial velocity was zero so we know that h=vt+1/2gt^2 so we get h=0+1/2*9.80*6^2 = 176.4m
so solving for final speed we get KE=PE = 1/2mv^2=mgh = 1/2v^2=gh so
v=sqrt(2*g*h) = sqrt(2*9.8*176.4m) = 58.8m/s final speed when it hits the ground
hope this helps you! Thanks!!
There are many porperties. You can use Altitude, Temperature, Pressure and Density, but the best one is temperature. The resaon for that is that based on the temperature changes then the athmosphere can be broken into four major layers. Remember that the layers are the following: <span>the </span>troposphere,the<span> </span>stratosphere, <span>the </span>mesosphere<span>, and the</span>thermosphere<span>.</span>
Answer:
v = -14 m/s
Explanation:
Given that,
Initial location of the ball, X₁ = 10 m
Final position of the ball, X₂ = -25 m
Time taken to travel is, t = 2.5 s
The average velocity of the ball is given by the formula,
V = X₂ - X₁ / t m/s
Substituting the values in the above equation,
V = -25 - 10 / 2.5
= -14 m/s
The negative sign in the velocity indicates that ball rolls in the opposite direction.
Hence, the average velocity of the ball is v = -14 m/s
Answer:
The S.I unit of heat is Joule .
Hope it helps you :--)
Explanation:
Please press thanks!! thank you!!