Answer:
17.7 m/s
Explanation:
Given:
y₀ = 0 m
y = 16 m
v₀ = 0 m/s
a = 9.8 m/s²
Find: v
v² = v₀² + 2a (y − y₀)
v² = (0 m/s)² + 2 (9.8 m/s²) (16 m − 0 m)
v = 17.7 m/s
The ball is moving at a speed of 17.7 m/s when it hits the ground.
Because the transfer of electrons is called an ion, and also, they are being lost, they atom will become positively charged. The Ion will lose electrons and become a cation.
Answer: The atom becomes positively charged.
The work is equal to the product between the force applied and the distance covered by the box:

In our problem, W=556 J, and d=1.3 m (the box is lifted to a height of 1.3 m, so it covered 1.3 m from its initial point). Therefore we can find the force applied to lift the box:
The moon is moving away from Earth at a rate of approximately 3.78 cm per year.
This migration of the Moon from the Earth is mainly due to the action of the Earth tides. It can be explained as follows:
- the Moon exerts a gravitational force on the Earth, which is stronger at the Equator (since the Equator is closer to the Moon), creating the tides
- However, the Earth rotates faster on its axis (one rotation every 24 hours) than the Moon (one rotation every 27 days), therefore the tidal bulge on Earth tries to pull the Moon "ahead" in its orbit. As a result, the Moon tends to sped up.
<span>- As opposite reaction, the Earth tends to slow down in its rotation, with a loss of angular momentum. Since the angular momentum must be conserved, the radius of the orbit of the Moon becomes larger, and this explains why the Moon is moving away from the Earth.</span>