Answer:
the ball didnt hit my face so
Explanation:
S=56, u=0, v=33, a=?, t=3.4
v=u+at
33=3.4 a
a = 9.7m/s^2
The horizontal force is m*v²/Lh, where m is the total mass. The vertical force is the total weight (233 + 840)N.
<span>Fx = [(233 + 840)/g]*v²/7.5 </span>
<span>v = 32.3*2*π*7.5/60 m/s = 25.37 m/s </span>
<span>The horizontal component of force from the cables is Th + Ti*sin40º and the vertical component of force from the cable is Ta*cos40º </span>
<span>Thh horizontal and vertical forces must balance each other. First the vertical components: </span>
<span>233 + 840 = Ti*cos40º </span>
<span>solve for Ti. (This is the answer to the part b) </span>
<span>Horizontally </span>
<span>[(233 + 840)/g]*v²/7.5 = Th + Ti*sin40º </span>
<span>Solve for Th </span>
<span>Th = [(233 + 840)/g]*v²/7.5 - Ti*sin40º </span>
<span>using v and Ti computed above.</span>
Answer:
t = 5 s
Explanation:
Data:
- Initial Velocity (Vo) = 7 m/s
- Acceleration (a) = 3 m/s²
- Final Velocity (Vf) = 22 m/s
- Time (t) = ?
Use formula:
Replace:
Solve the subtraction of the numerator:
It divides:
How much time did it take the car to reach this final velocity?
It took a time of <u>5 seconds.</u>