Answer:
" In the Balmer series, the transitions happening in visible range are considered, which range from around 400 nm to 700 nm. The longest wavelength visible in the Balmer series is 656 nm."
Explanation:
Hope this is helpful :)
Answer:
Radius of the circle will be 2.5 m
Explanation:
We have given velocity of particle moving in the circle v = 5 m/sec
Acceleration of particle in the circle 
We have to find the radius of the circle
We know that acceleration is given by 
So 

So radius of the circle will be 2.5 m
Answer:
57 N
Explanation:
Were are told that the force
of gravity on Tomas is 57 N.
And it acts at an inclined angle of 65°
Thus;
The vertical component of the velocity is; F_y = 57 sin 65
While the horizontal component is;
F_x = 57 cos 65
Thus;
F_y = 51.66 N
F_x = 24.09 N
The net force will be;
F_net = √((F_y)² + (F_x)²)
F_net = √(51.66² + 24.09²)
F_net = √3249.0837
F_net = 57 N
No, not exactly. They jiggle and tremble and vibrate a lot, but
they always basically stay in very nearly the same place.
It's like if you're allowed to go anywhere you want in your jail cell,
you wouldn't exactly call that "moving about freely".
Explanation:
(a) Displacement of an object is the shortest path covered by it.
In this problem, a student is biking to school. She travels 0.7 km north, then realizes something has fallen out of her bag. She travels 0.3 km south to retrieve her item. She then travels 0.4 mi north to arrive at school.
0.4 miles = 0.64 km
displacement = 0.7-0.3+0.64 = 1.04 km
(b) Average velocity = total displacement/total time
t = 15 min = 0.25 hour

Hence, this is the required solution.