The average velocity can be calculated using the formula:
v = d / t
For the 1st car, the velocity is calculated
as:
v1 = 8.60 m / 1.80 s = 4.78 m / s
While that of the 2nd car is:
v2 = 8.60 m / 1.66 s = 5.18 m / s
Now we can solve for the acceleration using the formula:
v2^2 = v1^2 + 2 a d
Rewriting in terms of a:
a = (v2^2 – v1^2) / 2 d
a = (5.18^2 – 4.78^2) / (2 * 8.6)
a = 0.23 m/s
Therefore the train has a constant acceleration of about
0.23 meters per second.
horizontal distance of home run is 400 ft = 122 m
height of the home run is 3 ft = 0.9 m
now the angle of the hit is 51 degree
now we have equation of trajectory of the motion


solving above two equations we have

now here we will plug in all data




<em>so the ball was hit with speed 35.1 m/s from the ground</em>
Mira is much bigger than the Sun.
Only very massive stars will go through a supernova stage, causing the outer layer to explode away and the core to collapse in on itself, becoming very dense.
Answer:
* most of the emission would be in the infrared part, the visible radiation would be very small.
*total intensity of the semition decreases that the intensity depends on the fourth power of the temperature
Explanation:
The radiation emitted by the Sun is approximately the radiation of a black body, if the Sun were to cool, the maximum emission wavelength changes
λ T = 2,898 10⁻³
λ = 2,898 10⁻³ / T
if the temperature decreases the maximum wavelength the greater values are moved, that is to say towards the infrared. Therefore the emission curve also moves, in this case most of the emission would be in the infrared part, the visible radiation would be very small.
Furthermore, the total intensity of the semition decreases that the intensity depends on the fourth power of the temperature according to Stefan's law
P = σ A eT⁴
Under water turbans that are placed at the above to middle of the ocean they are used to capture kinetic motion