Answer:
Magnets strongly attract materials which already themselves have magnetic domains. They do not significantly attract many metals like gold, aluminum, silver, and even some types of high-chromium stainless-steel, which lack such domains. In fact, pure gold is slightly repelled.
Explanation:
Answer:
the terminal velocity of 14 nested coffee filters is 3.2 m/s
Explanation:
Given the data in the question;
we know that;
The terminal velocity is proportional to the square root of weight.
v ∝ √W
v = k√W
the proportionality constant depends upon the surface area and the density of the medium (like air). The coffee filters can be stacked such that the resulting area is roughly unchanged. So, the constant of proportionality k is also unchanged
v/√W = constant
v₂/√W₂ = v₁/√W₁
v₂ = v₁√(W₂ / W₁ )
given that;
v₁ = 0.856 m/s,
W₂ = 14W₁; meaning 14 coffee filters have 14 times the weight of a single coffee filter
so we substitute
v₂ = 0.856 √(14W₁ / W₁ )
v₂ = 0.856 √( 14( W₁/W₁)
v₂ = 0.856 √( 14(1)
v₂ = 0.856 √( 14 )
v₂ = 0.856 × 3.741657
v₂ = 3.2 m/s
Therefore, the terminal velocity of 14 nested coffee filters is 3.2 m/s
The correct answer is b i believe
The average velocity or displacement of a particle for the first time interval is <u>Δs / Δt = 6 cm/s.</u>
Solution:
As we know that displacement is calculated in centimeters and the unit of time is second.
The average velocity for the first interval [1,2] is given
Δs / Δt = s (t2) - s (t) / t2 - t1
Δs / Δt = 2sin2 π + 3cos 2 π - ( 2sin π + 3cos π ) / 2 - 1
Δs / Δt = 2(0) + 3(1) - 2(0) - 3 (-1) / 1
Δs / Δt = 6 cm/s
Thus the average velocity or displacement of a particle for the first time interval is Δs / Δt = 6 cm/s
If you need to learn more about displacement click here:
brainly.com/question/28370322
#SPJ4
The complete question is:
The displacement of a particle moving back and forth along a line is given by the following equation s(t) = 2sin π t + 3cos π t. Estimate the instantaneous velocity of the particle when t = 1