Percent Composition by Mass. Percent composition is calculated from a molecular formula by dividing the mass of a single element in one mole of a compound by the mass of one mole of the entire compound. This value is presented as a percentage.
The best answer. :)
<h3>
Answer:</h3>
200 mL
<h3>
Explanation:</h3>
Concept tested: Dilution formula
We are given;
- Concentration of stock solution as 1.00 M
- Volume of the stock solution as 50 mL
- Molarity of the dilute solution as 0.25 M
We are required to calculate the volume of diluted solution;
- The stock solution is the original solution before dilution while diluted solution is the solution after dilution.
- Using the dilution formula we can determine the volume of diluted solution;
M1V1 = M2V2
Rearranging the formula;
V2 = M1V1 ÷ M2
= (1.00 M × 50 mL) ÷ 0.25 M
= 200 mL
Therefore, a volume of 200mL of 0.25 M solution could be made from the stock solution.
Erosion? As time passes, the continents move? Some crumble? I don't know but I tried
Answer:
Pb(NO₃)₂ + K₂CrO₄ ⟶ PbCrO₄ + 2KNO₃
Step-by-step explanation:
The unbalanced equation is
Pb(NO₃)₂ + K₂CrO₄ ⟶ PbCrO₄ + KNO₃
Notice that the complex groups like NO₃ and CrO₄ stay the same on each side of the equation.
One way to simplify the balancing is to replace them with a single letter.
(a) For example, let <em>X = NO₃</em> and <em>Y =CrO₄</em>. Then, the equation becomes
PbX₂ + K₂Y ⟶ PbY + KX
(b) You need 2X on the right, so put a 2 in front of KX.
PbX₂ + K₂Y ⟶ PbY + 2KX
(c) Everything is balanced. Now, replace X and Y with their original meanings. The balanced equation is
Pb(NO₃)₂ + K₂CrO₄ ⟶ PbCrO₄ + 2KNO₃
Answer:

Explanation:
R = Rydberg constant = 
= Principal quantum number of an energy level = 2
= Principal quantum number of an energy level for the atomic electron transition = 4
Wavelength is given by the Rydberg formula

The wavelength of the light emitted is
.