The potential energy will be 1.46*10^-4J.
To find the answer, we have to know about the torque acting on a current loop in a uniform magnetic field.
<h3>How to find the potential energy of the loop?</h3>
- We have the expression for torque acting on a current loop in a uniform magnetic field as,

where; M is the magnetic dipole moment, B is the magnetic field , and theta is the angle between M and B.
- As we know that, the torque is equal to force times the perpendicular distance. Thus, it is equivalent to the work done. This work is stored as the potential energy in the loop.
- Thus, the potential energy will be,

Thus, we can conclude that, the potential energy will be 1.46*10^-4J.
Learn more about the torque here:
brainly.com/question/27949876
#SPJ4
Answer:
50
Explanation:
The mechanical advantage of a machine is given by

where
is the output force
is the input force
For the crowbar in this problem,
is the force in input applied by the worker
is the force that the machine must apply in output to overcome the resistance of the window and to open it
Substituting into the equation, we find

It is an imaginary transformer which has no core loss, no ohmic resistance and no leakage flux. The ideal transformer has the following important characteristic. The resistance of their primary and secondary winding becomes zero. The core of the ideal transformer has infinite permeability.
Just because the book is moving doesn't tell you anything about the forces on it, or even whether there ARE any.
Just look at Newton's first law of motion, and this time, let's try and THINK about it too. It says something to the effect that any object continues in constant, uniform MOTION ..... UNLESS acted on by an external force.