19,600 Newtons (about 4,400 pounds).
On Earth only.
Different in other places.
Answer:
6.0cm
Explanation:
Given
focal length = 15.0cm
object distance = 10.0cm
Required
Image distance v
Using the formula
1/f = 1/u + 1/v
1/15 = 1/10+1/v
1/v = 1/15 + 1/10
1/v = 2+3/30
1/v = 5/30
v = 30/5
v = 6.0cm
Hence the image distance is 6.0cm
Answer:
E = 1.19 N/C
Explanation:
Let's first determine the length of the arc which can be given as:
L= Rθ
where:
L = length of the arc
R = radius of curvature
θ = angle in radius
L = (9.09×10⁻²m)(2.59)
L = (0.0909)(2.59)
L = 0.235431 m
Then, the magnitude of electric field that Q produces at the center of curvature can be calculated by using the formula:
![E= \frac{\lambda}{4 \pi E_oR}[sin\frac{\theta}{2}-sin(-\frac{\theta}{2})]](https://tex.z-dn.net/?f=E%3D%20%5Cfrac%7B%5Clambda%7D%7B4%20%5Cpi%20E_oR%7D%5Bsin%5Cfrac%7B%5Ctheta%7D%7B2%7D-sin%28-%5Cfrac%7B%5Ctheta%7D%7B2%7D%29%5D)
![E= \frac{\lambda}{4 \pi E_oR}[sin\frac{\theta}{2}+sin(\frac{\theta}{2})]](https://tex.z-dn.net/?f=E%3D%20%5Cfrac%7B%5Clambda%7D%7B4%20%5Cpi%20E_oR%7D%5Bsin%5Cfrac%7B%5Ctheta%7D%7B2%7D%2Bsin%28%5Cfrac%7B%5Ctheta%7D%7B2%7D%29%5D)
![E= \frac{2\lambda}{4 \pi E_oR}[sin\frac{\theta}{2}]](https://tex.z-dn.net/?f=E%3D%20%5Cfrac%7B2%5Clambda%7D%7B4%20%5Cpi%20E_oR%7D%5Bsin%5Cfrac%7B%5Ctheta%7D%7B2%7D%5D)
Since 
where;
L = length
Q = charge
λ = density of the charge;
then substituting
for λ, we have :
![E= \frac{2(\frac{Q}{L})}{4 \pi E_oR}[sin\frac{\theta}{2}]](https://tex.z-dn.net/?f=E%3D%20%5Cfrac%7B2%28%5Cfrac%7BQ%7D%7BL%7D%29%7D%7B4%20%5Cpi%20E_oR%7D%5Bsin%5Cfrac%7B%5Ctheta%7D%7B2%7D%5D)
![E= \frac{2Q[sin\frac{\theta}{2}]}{4 \pi E_oLR}](https://tex.z-dn.net/?f=E%3D%20%5Cfrac%7B2Q%5Bsin%5Cfrac%7B%5Ctheta%7D%7B2%7D%5D%7D%7B4%20%5Cpi%20E_oLR%7D)
substituting our given parameter; we have:
![E= \frac{2(6.26*10^{-12}C)[sin\frac{2.59rad}{2}]}{4 \pi (8.85*10^{-12}C^2/N.m^2)(0.235431)(0.0909)}](https://tex.z-dn.net/?f=E%3D%20%5Cfrac%7B2%286.26%2A10%5E%7B-12%7DC%29%5Bsin%5Cfrac%7B2.59rad%7D%7B2%7D%5D%7D%7B4%20%5Cpi%20%288.85%2A10%5E%7B-12%7DC%5E2%2FN.m%5E2%29%280.235431%29%280.0909%29%7D)
E = 1.1889 N/C
E = 1.19 N/C
∴ the magnitude of the electric field that Q produces at the center of curvature = 1.19 N/C
Answer:
Zero
Explanation:
The work done on an object is given by:

where
F is the force applied on the object
d is the displacement of the object
is the angle between the direction of the force and the displacement
In this problem, you are pushing again a stationary wall: this means that the walls does not move. As a result, the displacement is zero: d=0. Therefore, the work done is also zero: W=0.
Answer;
By using kepler's 3rd law we find that;
-A year on Earth is shorter than a year on Saturn.
Explanation;
-Kepler’s 3rd law states that the square of a planet’s orbital period is proportional to the cube of its average distance from the Sun (semi-major axis), which tells us that more distant planets move more slowly in their orbits.
-In other words, if you square the 'year' of each planet, and divide it by the cube of its distance to the Sun, you get the same number, for all planets. The law captures the relationship between the distance of planets from the Sun, and their orbital periods.