D = 110 m, t = 5 s
v o = 110 cs : 5 m = 22 m/s
-------------------------------------
v = v o - a t
v = 0 m/s, v o = 22 m/s, t = 4 s
0 = 22 - 4 a
4 a = 22
a = 22 : 4
a = 5.5 m/s²
g = 9.80 m/s²
9.80 : 5.5 = 0.56
Answer:
The magnitude of its acceleration is 5.5 m/s or 0.56 g.
The wavelength and frequency of light are closely related. The higher the frequency, the shorter the wavelength. Because all light waves move through a vacuum at the same speed, the number of wave crests passing by a given point in one second depends on the wavelength. That number, also known as the frequency, will be larger for a short-wavelength wave than for a long-wavelength wave.
The force exerted on the board by the karate master given the data is -4500 N
<h3>Data obtained from the question </h3>
- Initial velocity (u) = 10 m/s
- Final velocity (v) = 1 m/s
- Time (t) = 0.002 s
- Mass (m) = 1 Kg
- Force (F) = ?
<h3>How to determine the force</h3>
The force exerted can be obtained as illustrated below:
F = m(v - u) / t
F = 1 (1 - 10) / 0.002
F = (1 × -9) / 0.002
F = -4500 N
Learn more about momentum:
brainly.com/question/250648
#SPJ1
Answer:
The trains mass in pounds would be 40084.029 if you would round it to the hundreths
Explanation: