1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
AlekseyPX
3 years ago
10

What would happen if an Asteroid hit earth?

Physics
2 answers:
svp [43]3 years ago
4 0

Answer:

There would be tremendous earthquakes and tsunamis, followed by massive volcanism around the impact zone. The ozone layer would be destroyed. The oceans would turn acidic. The Sun would be blotted out, probably for decades.              

Explanation:

    Hope this helps!

Mars2501 [29]3 years ago
4 0

Answer: Well it depends on the size. If the asteroid was the size of a basketball, it would most probably turn to dust by the time it reaches the surface. But, if it was the size of Australia, then most probably everyone would die.

Explanation:

You might be interested in
A small block is attached to an ideal spring and is moving in SHM on a horizontal, frictionless surface. When the amplitude of t
Maslowich

Answer:

a) The time taken to travel from 0.18 m to -0.18m when the amplitude is doubled = 2.76 s

b) The time taken to travel from 0.09 m to -0.09 m when the amplitude is doubled = 0.92 s

Explanation:

a) The period of a simple harmonic motion is given as T = (1/f) = (2π/w)

It is evident that the period doesn't depend on amplitude, that is, it is independent of amplitude.

Hence, the time it would take the block to move from its amplitude point to the negative of the amplitude point (0.09 m to -0.09 m) in the first case will be the same time it will take the block to move from its amplitude point to negative of the amplitude point in the second case (0.18 m to -0.18 m).

Hence, time taken to travel from 0.18 m to -0.18m when the amplitude is doubled is 2.76 s

b) Now that the amplitude has been doubled, the time taken to move from amplitude point to the negative amplitude point in simple harmonic motion, just like with waves, is exactly half of the time period.

The time period is defined as the time taken to complete a whole cycle and a while cycle involves movement from the amplitude to point to the negative amplitude point then fully back to the amplitude point. Hence,

0.5T = 2.76 s

T = 2 × 2.76 = 5.52 s

Note that the displacement of a body undergoing simple harmonic motion from the equilibrium position is given as

y = A cos wt (provided that there's no phase difference, that is, Φ = 0)

A = amplitude = 0.18 m

w = (2π/5.52) = 1.138 rad/s

When y = 0.09 m, the time = t₁₂ = ?

0.09 = 0.18 Cos 1.138t₁ (angles in radians)

Cos 1.138t₁ = 0.5

1.138t₁ = arccos (0.5) = (π/3)

t₁ = π/(3×1.138) = 0.92 s

When y = -0.09 m, the time = t₂ = ?

-0.09 = 0.18 Cos 1.138t₂ (angles in radians)

Cos 1.138t₂ = -0.5

1.138t₂ = arccos (-0.5) = (2π/3)

t₂ = 2π/(3×1.138) = 1.84 s

Time taken to move from y = 0.09 m to y = -0.09 m is then t = t₂ - t₁ = 1.84 - 0.92 = 0.92 s

Hope this Helps!!!

3 0
3 years ago
Can a person run at a speed of 20 meters per second
tensa zangetsu [6.8K]

Answer:

No

Explanation:

The fastest recorded time for a person to run 100 metres is 9.58 seconds, which is the equivalent of 10.4 metres per second

6 0
1 year ago
Read 2 more answers
A body falls from the top of the tower and during the last second of its fall it fall through 23mvfind height of tower.
DanielleElmas [232]

Answer:

39.7 m

Explanation:

First, we conside only the last second of fall of the body. We can apply the following suvat equation:

s=ut+\frac{1}{2}at^2

where, taking downward as positive direction:

s = 23 m is the displacement of the body

t = 1 s is the time interval considered

a=g=9.8 m/s^2 is the acceleration

u is the velocity of the body at the beginning of that second

Solving for u, we find:

ut=s-\frac{1}{2}at^2\\u=\frac{s}{t}-\frac{1}{2}at=\frac{23}{1}-\frac{1}{2}(9.8)(1)=18.1 m/s

Now we can call this velocity that we found v,

v = 18 m/s

And we can now consider the first part of the fall, where we can apply the following suvat equation:

v^2-u^2 = 2as'

where

v = 18 m/s

u = 0 (the body falls from rest)

s' is the displacement of the body before the last second

Solving for s',

s'=\frac{v^2-u^2}{2a}=\frac{18.1^2-0}{2(9.8)}=16.7 m

Therefore, the total heigth of the building is the sum of s and s':

h = s + s' = 23 m + 16.7 m = 39.7 m

7 0
3 years ago
Is there air resistance in space?........HELP!!!!!
Leokris [45]
There's no air in space, so there's no air resistance there.
5 0
3 years ago
Read 2 more answers
Planck’s constant is a ratio between which two quantities?
Readme [11.4K]

Answer: D

Explanation:

7 0
3 years ago
Read 2 more answers
Other questions:
  • The ocean helps absorb: hydrogen carbon dioxide nitrogen sulfur dioxide
    7·2 answers
  • The metric unit for temperature is _______________.<br> a. fahrenheitb. celsiusc. secondd. liter
    8·1 answer
  • Is metal denting a physical change
    15·1 answer
  • What is the SI unit for speed and velocity?
    14·2 answers
  • How should a scientist confirm that an experiment has good data
    14·2 answers
  • In an uncomformity between two layers of rock, how is the lower layer usally described
    11·1 answer
  • The space around a charge or a pole in which a force is experienced is called a:
    8·1 answer
  • I AM DDDUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUMMMMMMMMBBB
    9·2 answers
  • Graphs are pictorial representations of ____.
    11·1 answer
  • PLEASE REAL ANSWERS IM SUPER BEHIND
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!