Gravitational acceleration (Ga) is inversely proportional to k / Distance^2
so Ga * Distance^2 = K
On the surface of Earth acceleration due to gravity is about 9.8m/s^2 with an average distance to the earths core of about 6371 km (Wolfram alpha).
So k = 9.8 * 6371^2
I'm presuming that your distance of 116 is km
As
Ga = k / distance^2
Ga = ((9.8 * 6371^2) / (6371 + 116)^2 ) = 397778481.8 / 42081169
= 9.45 m/s^2 to 2sf
Momentum is a vector, although we don't hammer on that. In order to completely describe a momentum, you need a magnitude AND a direction ... just like force and velocity.
So choice #2 is the magnitude of a momentum, without its direction.
<em>Choice #3</em> is the full package, with both the magnitude and the direction.
Choice #1 has units of energy, and choice #4 has units of acceleration, so neither of those can be it.
Pretty sure its volcanic ash or magma, hope this helps
Answer:
is the drop in the water temperature.
Explanation:
Given:
- mass of ice,

- mass of water,

Assuming the initial temperature of the ice to be 0° C.
<u>Apply the conservation of energy:</u>
- Heat absorbed by the ice for melting is equal to the heat lost from water to melt ice.
<u>Now from the heat equation:</u>

......................(1)
where:
latent heat of fusion of ice 
specific heat of water 
change in temperature
Putting values in eq. (1):

is the drop in the water temperature.