Answer:
a) the spring will stretch 60.19 mm
with the same box attached as it accelerates upwards
b) spring will be relaxed when the elevator accelerates downwards at 9.81 m/s²
Explanation:
Given that;
Gravitational acceleration g = 9.81 m/s²
Mass m = 5 kg
Extension of the spring X = 50 mm = 0.05 m
Spring constant k = ?
we know that;
mg = kX
5 × 9.81 = k(0.05)
k = 981 N/m
a)
Given that; Acceleration of the elevator a = 2 m/s² upwards
Extension of the spring in this situation = X1
Force exerted by the spring = F
we know that;
ma = F - mg
ma = kX1 - mg
we substitute
5 × 2 = 981 × X1 - (5 ×9.81 )
X1 = 0.06019 m
X1 = 60.19 mm
Therefore the spring will stretch 60.19 mm
with the same box attached as it accelerates upwards
B)
Acceleration of the elevator = a
The spring is relaxed i.e, it is not exerting any force on the box.
Only the weight force of the box is exerted on the box.
ma = mg
a = g
a = 9.81 m/s² downwards.
Therefore spring will be relaxed when the elevator accelerates downwards at 9.81 m/s²
Answer:
Stop cheating in exam
Explanation:
Shame!!!!
I am sorry but I will have to refer you to the student conduct at UTA.
The charged particles are often deflated in a magnetic field.
<h3>What is a magnetic field?</h3>
The term charge refers to a positive or negative entity. The can be created when a charge is made to pass through a conductor in a magnetic field.
A magnetic field is created when we have a north pole and a south pole. The charged particles could be made to pass through the electric field and when that happens, we can see a pattern a shown in the image attached.
Thus, we can see that the charged particles are often deflated in a magnetic field.
Learn more about magnetic field:brainly.com/question/23096032
#SPJ1
In this case, volume of the can remains constant. The relationship between pressure and temperature at constant volume is given by:
P/T = Constant
Then

Where
P1 = 40 psi
P2 = ?
T1 = 60°F ≈ 289 K
T2 = 90°F ≈ 305 K (note, 363 K is not right)
Substituting;