Answer:
Keq = 2k₃
Explanation:
We can solve this exercise using Newton's second one
F = m a
Where F is the eleatic force of the spring F = - k x
Since we have two springs, they are parallel or they are stretched the same distance by the object and the response force Fe is the same for the spring age due to having the same displacement
F + F = m a
k₃ x + k₃ x = m a
a = 2k₃ x / m
To find the effective force constant, suppose we change this spring to what creates the cuddly displacement
Keq = 2k₃
Answer:
1977.696 J
Explanation:
Given;
Weight of the box = 28.0 kg
Force applied by the boy = 230 N
angle between the horizontal and the force = 35°
Therefore,
the horizontal component of the force = 230 × cosθ
= 230 × cos 35°
= 188.405 N
Coefficient of kinetic friction, μ = 0.24
Force by friction, f = μN
here,
N = Normal force = Mass × acceleration due to gravity
or
N = 28 × 9.81 = 274.68 N
therefore,
f = 0.24 × 274.68
or
f = 65.9232 N
Now,
work done by the boy, W₁ = 188.405 N × Displacement
= 188.405 N × 30
= 5652.15 J
and,
the
work done by the friction, W₂ = - 65.9232 N × Displacement
= - 65.9232 N × 30 m
= - 1977.696 J
[ since the friction force acts opposite to the direction of motion, therefore the workdone will be negative]
The actual answer is B) Chlorine
According to the Bohr Model diagram, the atom has seventeen electrons. This makes it Chlorine.
Sorry if i'm late!!
Answer:
In the picture.
Explanation:
I hope that it's a clear solution.
Answer: Tension = 53.6N
Explanation:
Given that
Height h = 1 m
Time t = 1.7 s.
Mass m = 5.1 kg
From the equation of the motion we can get the acceleration of the elevator:
h = X0+ V0t + at2/2;
Th elevator starts from rest with a constant upward acceleration. Initial velocity Vo = 0, also Xo = 0; thus
a = 2h/t2 = 2 × 1/1.7^2
a = 0.69 m/s2.
Then we can find the tension in the cord by using the formula
T = mg + ma
= 5.1 (9.8 + 0.69)
= 5.1 × 10.5
= 53.6N