Answer:
a) 
b) 
Explanation:
Part a
For this case we can begin finding the period like this:

Then we know that the centripetal acceleration is given by:

And the velocity is given by:

If we replace this into the acceleration we got:

And we can replace the values and we got:

Part b
For this case we want to find a value of k such that:

Where a = 9.74, so then we can solve for k like this:

I think the answer is photosynthis, when plants turn light into food and energy.
Answer
given,
I = 0.140 kg ·m²
decrease from 3.00 to 0.800 kg ·m²/s in 1.50 s.
a) 

τ = -1.467 N m
b) angle at which fly wheel will turn



θ = 20.35 rad
c) work done on the wheel
W = τ x θ
W = -1.467 x 20.35 rad
W = -29.86 J
d) average power of wheel


Answers:
a) 
b) 
c) 
Explanation:
<h3>a) Impulse delivered to the ball</h3>
According to the Impulse-Momentum theorem we have the following:
(1)
Where:
is the impulse
is the change in momentum
is the final momentum of the ball with mass
and final velocity (to the right) 
is the initial momentum of the ball with initial velocity (to the left) 
So:
(2)
(3)
(4)
(5)
<h3>b) Time </h3>
This time can be calculated by the following equations, taking into account the ball undergoes a maximum compression of approximately
:
(6)
(7)
Where:
is the acceleration
is the length the ball was compressed
is the time
Finding
from (7):
(8)
(9)
(10)
Substituting (10) in (6):
(11)
Finding
:
(12)
<h3>c) Force applied to the ball by the bat </h3>
According to Newton's second law of motion, the force
is proportional to the variation of momentum
in time
:
(13)
(14)
Finally:

Answer:

Explanation:
Assuming the we have to find ratio maximum forces on the mass in each case
we know that in a spring mass system
F= Kx
K= spring constant
x= spring displacement
Case 1:

case 2:

therefore, 
