Answer: polar molecule.
Explanation:
The boiling point is the temperature at which the vapor pressure of a liquid equals the external pressure surrounding the liquid. The boiling point is dependent on the type of forces present.
Iodine monochloride (ICl) is a polar molecule due to the difference in electronegativities of iodine and chlorine. Thus the molecules are bonded by strong dipole dipole forces. Thus a higher temperature is needed to generate enough vapor pressure.
Bromine
is a non polar molecule as there is no electronegativity difference between two bromine atoms. The molecules are bonded by weak vanderwaal forces and thus has low boiling point.
Answer:
Molecular formula naphthalene → C₁₀H₈
Empirical formula naphthalene → C₅H₄
Explanation:
Centesimal composition means that in 100 g of compound we have x g of the element. Therefore in 100 g of naphthalene we have:
93.7 g of C
6.3 g of H
Let's make a rule of three:
In 100 g of naphthalene we have 93.7 g of C and 6.3 g of H
In 128 g of naphthalene we would have:
128 . 93.7 / 100 = 120 g of C
128. 6.3 / 100 = 8 g of H
We convert the mass to moles, by molar mass:
120 g . 1mol / 12 g = 10 moles C
8 g . 1mol/ 1g = 8 moles H
Molecular formula naphthalene → C₁₀H₈
Empirical formula naphthalene → C₅H₄
(The sub-index of each element is divided by the largest possible number)
Methane is the compound CH4, and burning it uses the reaction:
CH4 + O2 -> CO2 + H2O, which is rather exothermic. To find the heat released by burning a certain amount of the substance, you should look at the bond enthalpy of each compound, and then compare the values before and after the reaction. In methane, there are 4 C-H bonds, which have bond energy of 416 kj/mol, resulting in a total bond energy of 1664 kj/mol. O2 is 494 kj/mol. Therefore we have a total of 2080 kj/mol on the left side. On the right side we have CO2, which has 2 C=O bonds, each at 799 kj/mol each, resulting in 1598 kj/mol, and H2O has 2 O-H bonds, at 459kj/mol each, resulting in a total of 2516 kj/mol on the right hand side. Now, this may be confusing because the left hand side seems to have less heat than the right, but you just need to remember: making minus breaking, which results in a total change of 436kj/mol heat evolved.
Now it is a simple matter of find the mols of CH4 reacted, using n=m/mr.
n = 9.5/16.042 = 0.592195 mol
Therefore, if we reacted 0.592195 mol, and we produced 436 kj for one mol, the total amount of energy evolved was 436*<span>0.592195 kj, or 258.197 kj.</span>
Answer:
B. Composed of molecules relatively far apart.
Explanation:
The gas we call "air" has molecules that are relatively far apart.
Among the elements Barium has the lowest Ionization Energy.
<h3>What is Ionization Process ?</h3>
The process by which any neutral atom gets converted into electrically charged by gaining or losing electron is called Ionization Process.
K is an alkali metal it has to lose one electron to attain stable electronic configuration of an inert gas
For removing second electron , a stable configuration has to be broken and so will require high amount of energy.
Ca and Ba are alkaline earth metals.
They both have to lose 2 electrons to attain stable electronic configuration of noble gas.
They have low Iow Ionization Energy as compared to K.
Ca has higher Ionization Energy as compared to Ba because when we move down the periodic table , The ionization energy decreases.
Hence , Among the elements Barium has the lowest Ionization Energy.
To know more about Ionization Process
brainly.com/question/6638422
#SPJ1