Answer:
134.8 mmHg is the vapor pressure for solution
Explanation:
We must apply the colligative property of lowering vapor pressure, which formula is: P° - P' = P° . Xm
P° → Vapor pressure of pure solvent
P' → Vapor pressure of solution
Xm → Mole fraction for solute
Let's determine the moles of solute and solvent
17.5 g . 1 mol/180 g = 0.0972 moles
82 g . 1mol / 32 g = 2.56 moles
Total moles → moles of solute + moles of solvent → 2.56 + 0.0972 = 2.6572 moles
Xm → moles of solute / total moles = 0.0972 / 2.6572 = 0.0365
We replace the data in the formula
140 mmHg - P' = 140 mmHg . 0.0365
P' = - (140 mmHg . 0.0365 - 140mmHg)
P' = 134.8 mmHg
Your question has been heard loud and clear.
Uhm , Alkalis are just bases who react with water. In titration we use water also , so we need bases that react with water , and such bases are alkalis.
Alkalis are a type of bases.
Thank you
This is all no chemistry but the answer is C
<span>E = mCdT
E = energy, m = mass, C = specific heat capacity, dT = change in temperature.
526 = 0.074C x 17
E = 0.074C x 55
Divide the equations
E/526 = (0.074C x 55)/(0.074C x 17) = 55/17
E = (55 x 526)/17 = 1702 J</span>
Answer: b. It would happen faster at warmer air temperatures
Explanation:saw another site say this was the answer