1/4 mol = 0.25 mol
6 months = 0.5 year
rate = 0,25 mol / 0.5 year = 0.5 mol/year or approx 0.042 mol/month
The mass of carbon contained in 2.25 g of potassium carbonate, K₂CO₃ is 0.196 g.
<h3>
Molecular mass of potassium carbonate</h3>
The molecular mass of potassium carbonate, K₂CO₃ is calculated as follows;
M = K₂CO₃
M = (39 x 2) + (12) + (16 x 3)
M = 138 g
mass of carbon in potassium carbonate, K₂CO₃ is = 12 g
The mass of carbon contained in 2.25 g of potassium carbonate, K₂CO₃ is calculated as follows;
138 g ------------ 12 g of carbon
2.25 g ------------ ?
= (2.25 x 12) / 138
= 0.196 g
Thus, the mass of carbon contained in 2.25 g of potassium carbonate, K₂CO₃ is 0.196 g.
Learn more about potassium carbonate here: brainly.com/question/27514966
#SPJ1
Answer:
The purpose of molecular modeling is to provide a three-dimensional image (either physical or software-based) that allows a chemist to better see the manner in which atoms and molecules can interact. These models can be used to interpret existing observations or to predict new chemical behavior.
Explanation:
It can describe shape and how they connect while forming the electrons.
An increase in the number of gas molecules in the same volume container increases pressure. A decrease in container volume increases gas pressure. An increase in temperature of a gas in a rigid container increases the pressure.
Z=1 is the formula i would have to see the following lol