Answer: apparent weighlessness.
Explanation:
1) Balance of forces on a person falling:
i) To answer this question we will deal with the assumption of non-drag force (abscence of air).
ii) When a person is dropped, and there is not air resistance, the only force acting on the person's body is the Earth's gravitational attraction (downward), which is the responsible for the gravitational acceleration (around 9.8 m/s²).
iii) Under that sceneraio, there is not normal force acting on the person (the normal force is the force that the floor or a chair exerts on a body to balance the gravitational force when the body is on it).
2) This is, the person does not feel a pressure upward, which is he/she does not feel the weight: freefalling is a situation of apparent weigthlessness.
3) True weightlessness is when the object is in a place where there exists not grativational acceleration: for example a point between two planes where the grativational forces are equal in magnitude but opposing in direction and so they cancel each other.
Therefore, you conclude that, assuming no air resistance, a person in this ride experiencing apparent weightlessness.
<span>Distance is a scalar quantity that refers to "how much ground an object has covered" during its motion. Displacement is a vector quantity that refers to "how far out of place an object is"; it is the object's overall change in position.</span>
Answer:
Party, Birthday, Weddings, Nightclub, Just for fun
Answer:
Right
Explanation:
electromagnetic waves can travel through space (a vacuum) because it doesn't need a medium and its particles to propagate whereas a mechanical wave needs a medium to propagate. For example sound is a mechanical wave, sound vibrates off a mediums particles to propagate and for sound to be heard and travel
Answer:
Explanation:
Using the pythagoras theorem, the displacement is expressed as;
d² = x²+y²
y = 36m (north)
x = 20m east
Substitute;
d² = 36²+20²
d² = 1296+400
d² = 1696
d = √1696
d = 41.18m
For the direction;
theta = tan^-1(y/x)
theta = tan^-1(36/20)
theta = tan^-1(1.8)
theta = 60.95°
Hence the magnitude is 41.18m and the direction is 60.95°