Answer:
56.7°
Explanation:
Imagine a rectangle triangle.
The triangle has 3 sides.
One side is the height of the tower, let's name it A.
Another side is the distance from the base of the tower to the point where the waire touches the ground. Let's name that B.
Sides A and B are perpendicular.
The other side is the length of the wire. Let's name it C.
From trigonometry we know that:
cos(a) = B / C
Where a is the angle between B anc C, between the wire and the ground.
Therefore
a = arccos(B/C)
a = arccos(552/1005) = 56.7°
The answer to your question is C. <span> the Sun's strong gravitational field . This is correct because i took the test :D</span>
Answer:
Far point.
Explanation:
The maximum distance up to which the normal eye can see objects distinct and clear is called the far point of the eye. It is infinity for a normal eye.
Answer:
33.65°
Explanation:
radius, r = 53.1 m
m = 2.9 Mg = 2.9 x 10^6 g = 2900 kg
v = 67 km/h
convert km/h into m/s
v = 18.61 m/s
Let the angle of banking of road is θ, without friction


tan θ = 0.6655
θ = 33.65°
Thus, the angle of banking of road is 33.65°.
Resistance of a wire is directly proportional to its length and inversely proportional to the square of its radius.
Thus, if the length is doubled, and the radius is halved:
R₂ = 2R₁/(1/2)²
R₂ = 8R₁
Therefore the resistance increases eight times.