The initial speed of the bolt is not 58.86 m/s.
Let a be the acceleration of the rocket.
During the 4 sec lift off, the rocket has reached a height of
h = (1/2)*a*t^2
with t=4,
h = (1/2)*a^16
h = 8*a
Its velocity at 4 sec is
v = t*a
v = 4*a
The initial velocity of the bolt is thus 4*a.
During the 6 sec fall, the bolt has the initial velocity V0=-4*a and it drops a total height of h=8*a. From the equation of motion,
h = (1/2)*g*t^2 + V0*t
Substituting h0=8*a, t=6 and V0=-4*a into it,
8*a = (1/2)*g*36 - 4*a*6
Solving for a
a = 5.52 m/s^2
No. The correct one would be D .
Answer:
Doppler shift of the starlight
Explanation:
To predict the movement of a star, we compare the spectra of elements found in star (H, He Na etc.), first spectra which are obtained from star and second spectra from laboratory. If spectral lines of the spectra obtained from star, are shifting towards red end (called red shift) then star is going away from earth and if shifting is towards blue (called blue shift), then star is approaching the earth. This is Doppler's shift.
An image that appears upside down behind the focal point is an image that is reflected on a concave mirror. Mirrors reflect different kinds of images based on the placement of an object that is reflected towards it. There are two kinds of mirrors, concave and a convex mirrors, the latter makes objects seem smaller and farther than where it is exactly.
According to the description given in the photo, the attached figure represents the problem graphically for the Atwood machine.
To solve this problem we must apply the concept related to the conservation of energy theorem.
PART A ) For energy conservation the initial kinetic and potential energy will be the same as the final kinetic and potential energy, so



PART B) Replacing the values given as,




Therefore the speed of the masses would be 1.8486m/s