Answer:
Explanation:
A. The kinetic energy is the same as the initial potential energy:
PE = mgh = (215 N)(2.0 M) = 430 J
__
B. The velocity achieved by falling from a height h is given by ...
v = √(2gh)
v = √(2·9.8 m/s^2·2 m) = √(39.2 m^2/s^2)
v ≈ 6.26 m/s
Answer:
V is approximately = 23m/s
Explanation:
Kinetic energy = ½ mv²
Where m= mass = 0.450kg
V= velocity =?
K. E = 119J
Therefore
K. E = ½ mv²
Input values given
119= ½ × 0.450 × v²
Multiply both sides by 2
119 ×2 = 2 × 1/2 × 0.450 × v²
238= 0.450v²
Divide both sides by 0.450
238/0.450 = 0.450v²/0.450
v² = 528.89
Square root both sides
Sq rt v² = sq rt 528.89
V = 22.998m/s
V is approximately = 23m/s
I hope this was helpful, please rate as brainliest
To model time-variant data, one must create a new entity in an m:n relationship with the original entity, is a False statement.
- Like the majority of software engineering initiatives, the ER process begins with gathering user requirements. What information must be retained, what questions must be answered, and what business rules must be implemented (For instance, if the manager column in the DEPARTMENT table is the only column, we have simply committed to having one manager for each department.)
- The end result of the E-R modeling procedure is an E-R diagram that can be roughly mechanically transformed into a set of tables. Tables will represent both entities and relationships; entity tables frequently have a single primary key, but the primary key for relationship tables nearly invariably involves numerous characteristics.
To know more about entity AND relationship visit : brainly.com/question/28232864
#SPJ4