<span>There are pros and cons as to whether CCA-treated (pressure-treated) wood should be removed from existing structures, and both sides are subjective.
Some of the arguments for leaving it include:
*When burned, the wood can release dangerous, and sometimes, lethal fumes.
*If buried in a landfill, the chemicals can soak into the ground and eventually contaminate ground water.
*Removing it can expose people to arsenic
*It is costly to remove an existing infrastructure that may or may not be harming people
*Studies conducted within the past decade have determined structures containing CCA-treated wood pose no hazard
*Studies also concluded that children who played on CCA-treated playgrounds were exposed to arsenic levels lower than those that naturally occur in drinking water
Some of the arguments for removing it include:
*The EPA determined that some children could face higher cancer risks from exposure to CCA-treated wood
*If removed, it will need to be disposed of and, as discussed above, that creates another set of problems that could affect a community's health.
A possible solution is to leave existing CCA-treated wood in place but seek viable, safe alternatives for future structures.</span>
Answer:
yes, albert is better grffffrr#fffffrttt.
Explanation:
Answer:
B
the humidity is the % of water in the air and it is out of 100% of the air. so 10/100 is low
Answer:
F = 50 N
Explanation:
Given data:
Mass of car = 250 Kg
Acceleration of car = 0.20 m/s²
Force required = ?
Solution:
Formula:
F = m×a
F = applied force
m = mass
a = acceleration
Now we will put the values in formula.
F = 250 Kg × 0.20 m/s²
F = 50 Kg.m/s²
Kg.m/s² = N
F = 50 N
Answer:
13.06800 nanometers
Explanation:
i hope you had understand !