Answer:
Eªcell > 0; n = 2
Explanation:
The reaction:
I2 (s) + Pb (s) → 2 I- (aq) + Pb2+ (aq)
Is product favored.
A reaction that is product favored has ΔG < 0 (Spontaneous)
K > 1 (Because concentration of products is >>>> concentration reactants).
Eªcell > 0 Because reaction is spontaneous.
And n = 2 electrons because Pb(s) is oxidizing to Pb2+ and I₂ is reducing to I⁻ (2 electrons). Statements that are true are:
<h3>Eªcell > 0; n = 2</h3>
Answer:
a liquid which has passed through a filter.
Explanation:
Filtration is a physical separation process that separates solid matter and fluid from a mixture using a filter medium that has a complex structure through which only the fluid can pass
Answer:
1.65 L
Explanation:
The equation for the reaction is given as:
A + B ⇄ C
where;
numbers of moles = 0.386 mol C (g)
Volume = 7.29 L
Molar concentration of C = 
= 0.053 M
A + B ⇄ C
Initial 0 0 0.530
Change +x +x - x
Equilibrium x x (0.0530 - x)
![K = \frac{[C]}{[A][B]}](https://tex.z-dn.net/?f=K%20%3D%20%5Cfrac%7B%5BC%5D%7D%7B%5BA%5D%5BB%5D%7D)
where
K is given as ; 78.2 atm-1.
So, we have:
![78.2=\frac{[0.0530-x]}{[x][x]}](https://tex.z-dn.net/?f=78.2%3D%5Cfrac%7B%5B0.0530-x%5D%7D%7B%5Bx%5D%5Bx%5D%7D)


Using quadratic formula;

where; a = 78.2 ; b = 1 ; c= - 0.0530
=
or 
=
or 
= 0.0204 or -0.0332
Going by the positive value; we have:
x = 0.0204
[A] = 0.0204
[B] = 0.0204
[C] = 0.0530 - x
= 0.0530 - 0.0204
= 0.0326
Total number of moles at equilibrium = 0.0204 + 0.0204 + 0.0326
= 0.0734
Finally, we can calculate the volume of the cylinder at equilibrium using the ideal gas; PV =nRT
if we make V the subject of the formula; we have:

where;
P (pressure) = 1 atm
n (number of moles) = 0.0734 mole
R (rate constant) = 0.0821 L-atm/mol-K
T = 273.15 K (fixed constant temperature )
V (volume) = ???

V = 1.64604
V ≅ 1.65 L
Answer:
c.convention currents
Explanation:
As hot air cools it sinks back to the surface of the earth, where it gets warmed by the ocean only to rise again.This is called a convection current.
Answer:
C. how the size of a magnet affects the strength of its magnetic pull on objects.
Explanation:
"Magnetic force" is <em>inversely proportional to distance squared. </em>This is also related to the size of a magnet. The bigger the size, the bigger the domain it occupies and the stronger the magnetic field. However, this is not often the case and it largely depends on the types of magnets.
In the situation above, Jazelle wanted to determine how her five different-sized magnet affect the strength of their magnetic pull on the paper clips. In order to do this, she tried to<em> measure the distance</em>. The<em> closer the distance</em>, the <em>higher the magnetic field</em> and the stronger the strength. The farther the distance, the<em> lower the magnetic field</em> and the <em>weaker the strength.</em>
So, this explains the answer.