Jupiter, Saturn, Uranus, Neptune, Jovian... is your answer.
Answer:
(i) specific heat
(ii) latent heat of vaporization
(iii) latent heat of fusion
Explanation:
i. Q = mcΔT; identify c.
Here, Q is heat, m is the mass, c is the specific heat and ΔT is the change in temperature.
The amount of heat required to raise the temperature of substance of mass 1 kg by 1 degree C is known as the specific heat.
ii. Q = mLvapor; identify Lvapor
Here, Q is the heat, m is the mass and L is the latent heat of vaporization.
The amount of heat required to convert the 1 kg liquid into 1 kg vapor at constant temperature.
iii. Q = mLfusion; identify Lfusion
Here, Q is the heat, m is the mass and L is the latent heat of fusion.
Here, Q is the heat, m is the mass and L is the latent heat of vaporization.
The amount of heat required to convert the 1 kg solid into 1 kg liquid at constant temperature.
Complete question is;
When a diprotic acid is titrated with a strong base, and the Ka1 and Ka2 are significantly different, then the pH vs. volume plot of the titration will have
a. a pH of 7 at the equivalence point.
b. two equivalence points below 7.
c. no equivalence point.
d. one equivalence point.
e. two distinct equivalence points
Answer:
Option E - Two Distinct Equivalence points
Explanation:
I've attached a sample diprotic acid titration curve.
In diprotic acids, the titration curves assists us to calculate the Ka1 and Ka2 of the acid. Thus, the pH at the half - first equivalence point in the titration will be equal to the pKa1 of the acid while the pH at the half - second equivalence point in a titration is equal to the pKa2 of the acid.
Thus, it is clear that there are two distinct equivalence points.