A gas with a vapor density greater than that of air, would be most effectively displaced out off a vessel by ventilation.
The two following principles determine the type of ventilation: Considering the impact of the contaminant's vapour density and either positive or negative pressure is applied.
Consider a vertical tank that is filled with methane gas. Methane would leak out if we opened the top hatch since its vapour density is far lower than that of air. A second opening could be built at the bottom to greatly increase the process' efficiency.
A faster atmospheric turnover would follow from air being pulled in via the bottom while the methane was vented out the top. The rate of natural ventilation will increase with the difference in vapour density. Numerous gases that require ventilation are either present in fairly low concentrations or have vapor densities close to one.
Answer:
Students have investigated what's going on in the fictional town of Westfield, they learned that the mysterious reddish-brown substance in the water is actually rust, which formed because of a chemical reaction between the iron pipes and the fertilizer substance in the water.
Explanation:
The answer is A-Gravity. Why? This is because B and C are examples of chemical weathering and not mechanical. Although choice D may seem viable lava intrusion is not a direct cause of mechanical weathering although lava pushing upward may help in aiding mechanical weathering it would not be considered a big enough cause, thus gravity is the correct answer.
Answer:
The hydroxyl groups in alcohol molecules are responsible for hydrogen bonding between the alcohol molecules. As greater energy is required to overcome these strong intermolecular forces, the melting points and boiling points of alcohols are higher than those of alkanes with a corresponding chain length
Answer:
Explanation:
These instrument works on the analysis of the emisson spectral of light received from the star in this way.
Think of a steel knife in your kitchen. Initially, it has this shiny silver colour that typifies it. When the knife is placed on a hot plate, it becomes hotter and begins to go red as the heating continues. If we stop the heating and pour cold water on it, the red dissapears and our knife is back to itself, although the silvery shine would be lost. This is simply how the atomic absorption spectroscopy works. When you see the hot knife you can say a couple of things about it. Different metals have their various melting point. We can compare the temperature at which our knife will melt with a standard melting point scale to know the type of metal it is made of.
In atomic absorption spectroscopy, an atom gains energy and it becomes excited. Every atom is known to have a peculair amount of absorbant energy that cause them to excite. The more the particles in the atom, the more the energy required. When we analyse the absorbent energy of the atom, it differs from other atoms and we truly identify such an atom even if we don't know it. Most times, the energy is given off as light.