Iodine electron configuration is:
1S^2 2S^2 2P^6 3S^2 3P^6 4S^2 3d^10 4P^6 5S^2 4d^10 5P^5
when Krypton is the noble gas in the row above iodine in the periodic table,
we can change 1S^2 2S^2 2P^6 3S^2 3P^6 4S^2 3d^10 4P^6 by the symbol
[Kr] of Krypton.
So we can write the electron configuration of Iodine:
[Kr] 5S^2 4d^10 5P^5
Answer:
No hay resultados para ACFrOgDjZVP5d1mO2l6HAtPZQNnbFRq674g04E7uZadqJMPc4VbhdTIEDCWBeh3xfw9BrKkfHHEN4nxe9NVglsb9N8D49CjxvxHYw3L93m4wO6SY5SwKQYMk-2zzHtGzerun1Uh9k-mpxFw9D3I1.pdf
Explanation:
hablemos por g mail
Answer:
See explanation
Explanation:
According to Bronsted-Lowry, an acid is a proton donor while a base is a proton acceptor.
Hence, if we consider the reaction above, we will notice that for each base there is a conjugate acid and for each acid there is a conjugate base.
For the acid HNO3, its conjugate base is NO3^- while for the acid H3O^+, its conjugate base is H2O.
Answer:
- <u>Cadmium has larger atomic radius than sulfur.</u>
Explanation:
Down a period, atomic radii decrease from left to right due to the increase in the number of protons and electrons across a period: when a proton is added the pull of the electrons towards the nucleus is larger, so the size of the atom decreases.
Hence, you can compare the elements that belong to a same period and predict that the atom with lower atomic number (number of protons) will haver larger atomic radius. With that:
- Oxygen and fluorine are in the period 3, being oxygen to the left of fluorine, so oxygen is larger than fluorine.
- Sulfur and chlorine are in the period 4, being sulfur to the left of chlorine, so sulfur is larger than chlorine.
Now see whan happens down a group. Atomic radius increases from top to bottom within a group due to electron shielding. That permits you to compare the size of the elements in a group:
- Fluorine and chlorine are in the same group (17), with chlorine directly below fluorine, so the atomic radius of chlorine is larger than the atomic radius of fluorine.
- Sulfur and oxygen are in the same group (16), with sulfur directlly below oxygen, so sulfur the atomic radius of sulfur is larger than the atocmi radius of oxygen.
So far, you can rank the atomic radius of sulfur, chlorine, fluorine, and oxygen, in increasing order as:
- O < F < Cl < S, concluding that O, F, and Cl have smaller atomic radius than S.
Cadmiun, Cd, is to the left and below sulfur, so both electron shielding (down a group) and increase of the number of protons (down a period) lead to predict the cadmium has a larger atomic radius than sulfur.